Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomol NMR Assign ; 16(2): 349-355, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36050579

RESUMO

Miro2 and Miro1 are mitochondrial-associated proteins critical for regulating mitochondrial movement within the cell. Both Miro1 and Miro2 have roles in promoting neuron function, but recently Miro2 has been shown to have additional roles in response to nutrient starvation in tumor cells. Miro1 and 2 consist of two small GTPase domains flanking a pair of EF-hands. The N-terminal GTPase (nGTPase) domain is responsible for initiating mitochondrial trafficking and interactions with GCN1 in prostate cancer. The crystal structure of Miro1 nGTPase bound to GTP has been solved. However, no structural data is available for the nGTPase domain of Miro2. To better understand the similarities and differences in the functions of Miro1 and Miro2, we have initiated structural studies of Miro2. Here we report the backbone NMR chemical shift assignments of a 22 KDa construct of the nGTPase domain of Miro2 bound to GTP that includes residues 1-180 of the full-length protein. We affirm that the overall secondary structure of this complex closely resembles that of Miro1 nGTPase bound to GTP. Minor variations in the overall structures can be attributed to crystal packing interactions in the structure of Miro1. These NMR studies will form the foundation for future work identifying the specific interaction sites between Miro2 and its cellular binding partners.


Assuntos
Proteínas Mitocondriais , Proteínas rho de Ligação ao GTP , Guanosina Trifosfato/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ressonância Magnética Nuclear Biomolecular , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo
2.
Adv Biol Regul ; 78: 100757, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045516

RESUMO

Protein Kinase C-δ (PKCδ), regulates a broad group of biological functions and disease processes, including well-defined roles in immune function, cell survival and apoptosis. PKCδ primarily regulates apoptosis in normal tissues and non-transformed cells, and genetic disruption of the PRKCD gene in mice is protective in many diseases and tissue damage models. However pro-survival/pro-proliferative functions have also been described in some transformed cells and in mouse models of cancer. Recent evidence suggests that the contribution of PKCδ to specific cancers may depend in part on the oncogenic context of the tumor, consistent with its paradoxical role in cell survival and cell death. Here we will discuss what is currently known about biological functions of PKCδ and potential paradigms for PKCδ function in cancer. To further understand mechanisms of regulation by PKCδ, and to gain insight into the plasticity of PKCδ signaling, we have used functional proteomics to identify pathways that are dependent on PKCδ. Understanding how these distinct functions of PKCδ are regulated will be critical for the logical design of therapeutics to target this pathway.


Assuntos
Apoptose , Sobrevivência Celular , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/patologia , Proteína Quinase C-delta/metabolismo , Proteômica , Animais , Humanos , Camundongos , Neoplasias/terapia
3.
Pharmacol Ther ; 165: 1-13, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27179744

RESUMO

The serine-threonine protein kinase, protein kinase C-δ (PKCδ), is emerging as a bi-functional regulator of cell death and proliferation. Studies in PKCδ-/- mice have confirmed a pro-apoptotic role for this kinase in response to DNA damage and a tumor promoter role in some oncogenic contexts. In non-transformed cells, inhibition of PKCδ suppresses the release of cytochrome c and caspase activation, indicating a function upstream of apoptotic pathways. Data from PKCδ-/- mice demonstrate a role for PKCδ in the execution of DNA damage-induced and physiologic apoptosis. This has led to the important finding that inhibitors of PKCδ can be used therapeutically to reduce irradiation and chemotherapy-induced toxicity. By contrast, PKCδ is a tumor promoter in mouse models of mammary gland and lung cancer, and increased PKCδ expression is a negative prognostic indicator in Her2+ and other subtypes of human breast cancer. Understanding how these distinct functions of PKCδ are regulated is critical for the design of therapeutics to target this pathway. This review will discuss what is currently known about biological roles of PKCδ and prospects for targeting PKCδ in human disease.


Assuntos
Antineoplásicos/uso terapêutico , Desenho de Fármacos , Neoplasias/tratamento farmacológico , Proteína Quinase C-delta/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Antineoplásicos/efeitos adversos , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Proteína Quinase C-delta/genética , Proteína Quinase C-delta/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais/efeitos dos fármacos
4.
Small GTPases ; 6(3): 157-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26280620

RESUMO

The RAL GTPases have emerged as important drivers of tumor growth and metastasis in lung, colon, pancreatic and other cancers. We recently developed the first small molecule inhibitors of RAL that exhibited antitumor activity in human lung cancer cell lines. These compounds are non-competitive inhibitors that bind to the allosteric site of GDP-bound RAL. The RAL inhibitors have the potential to be used in combination therapy with other inhibitors of the RAS signaling pathway. They also provide insights toward directly targeting other GTPases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/enzimologia , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Sítio Alostérico , Antineoplásicos/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica , Linhagem Celular Tumoral , Humanos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas ral de Ligação ao GTP/química , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas ras/antagonistas & inibidores
5.
Nature ; 515(7527): 443-7, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25219851

RESUMO

The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and (1)H-(15)N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.


Assuntos
Ensaios de Seleção de Medicamentos Antitumorais , Terapia de Alvo Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas ral de Ligação ao GTP/antagonistas & inibidores , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Feminino , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ral de Ligação ao GTP/química , Proteínas ral de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo
6.
Biochem J ; 461(2): 335-45, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24766439

RESUMO

Chitosanase is able to specifically cleave ß-1,4-glycosidic bond linkages in chitosan to produce a chito-oligomer product, which has found a variety of applications in many areas, including functional food and cancer therapy. Although several structures for chitosanase have been determined, the substrate-binding mechanism for this enzyme has not been fully elucidated because of the lack of a high-resolution structure of the chitosanase-substrate complex. In the present study we show the crystal structure of a novel chitosanase OU01 from Microbacterium sp. in complex with its substrate hexa-glucosamine (GlcN)6, which belongs to the GH46 (glycoside hydrolyase 46) family in the Carbohydrate Active Enzymes database (http://www.cazy.org/). This structure allows precise determination of the substrate-binding mechanism for the first time. The chitosanase-(GlcN)6 complex structure demonstrates that, from the -2 to +1 position of the (GlcN)6 substrate, the pyranose rings form extensive interactions with the chitosanase-binding cleft. Several residues (Ser27, Tyr37, Arg45, Thr58, Asp60, His203 and Asp235) in the binding cleft are found to form important interactions required to bind the substrate. Site-directed mutagenesis of these residues showed that mutations of Y37F and H203A abolish catalytic activity. In contrast, the mutations T58A and D235A only lead to a moderate loss of catalytic activity, whereas the S27A mutation retains ~80% of the enzymatic activity. In combination with previous mutagenesis studies, these results suggest that the -2, -1 and +1 subsites play a dominant role in substrate binding and catalysis. DSF (differential scanning fluorimetry) assays confirmed that these mutations had no significant effect on protein stability. Taken together, we present the first mechanistic interpretation for the substrate (GlcN)6 binding to chitosanase, which is critical for the design of novel chitosanase used for biomass conversion.


Assuntos
Proteínas de Bactérias/química , Quitosana/química , Glicosídeo Hidrolases/química , Hexosaminas/química , Micrococcaceae/química , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Quitosana/metabolismo , Cristalografia por Raios X , Bases de Dados de Proteínas , Glicosídeo Hidrolases/genética , Glicosídeo Hidrolases/metabolismo , Hexosaminas/metabolismo , Hidrólise , Cinética , Micrococcaceae/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Nucleic Acids Res ; 39(20): 8820-32, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21965542

RESUMO

Metazoan spliced leader (SL) trans-splicing generates mRNAs with an m(2,2,7)G-cap and a common downstream SL RNA sequence. The mechanism for eIF4E binding an m²²7G-cap is unknown. Here, we describe the first structure of an eIF4E with an m(2,2,7)G-cap and compare it to the cognate m7G-eIF4E complex. These structures and Nuclear Magnetic Resonance (NMR) data indicate that the nematode Ascaris suum eIF4E binds the two different caps in a similar manner except for the loss of a single hydrogen bond on binding the m(2,2,7)G-cap. Nematode and mammalian eIF4E both have a low affinity for m(2,2,7)G-cap compared with the m7G-cap. Nematode eIF4E binding to the m7G-cap, m(2,2,7)G-cap and the m(2,2,7)G-SL 22-nt RNA leads to distinct eIF4E conformational changes. Additional interactions occur between Ascaris eIF4E and the SL on binding the m(2,2,7)G-SL. We propose interactions between Ascaris eIF4E and the SL impact eIF4G and contribute to translation initiation, whereas these interactions do not occur when only the m(2,2,7)G-cap is present. These data have implications for the contribution of 5'-UTRs in mRNA translation and the function of different eIF4E isoforms.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Proteínas de Helminto/química , Iniciação Traducional da Cadeia Peptídica , Análogos de Capuz de RNA/química , Animais , Ascaris suum , Fosfatos de Dinucleosídeos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Helminto/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Líder para Processamento/química
8.
J Mol Biol ; 411(1): 68-82, 2011 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-21620857

RESUMO

CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. CD147 expression is so high in several cancers that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2, which is ubiquitously expressed in most tissues, and CD147 Ig0-Ig1-Ig2, which is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despite its potential role in retinoblastoma. We present the first crystal structure of the human CD147 Ig0 domain and show that the CD147 Ig0 domain is a crystallographic dimer with an I-type domain structure, which maintained in solution. Furthermore, we have utilized our structural data together with mutagenesis to probe the biological activity of CD147-containing proteins, both with and without the CD147 Ig0 domain, within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6 and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Finally, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation.


Assuntos
Basigina/química , Basigina/metabolismo , Linhagem Celular , Cristalografia por Raios X , Análise Mutacional de DNA , Humanos , Modelos Moleculares , Multimerização Proteica , Estrutura Quaternária de Proteína
9.
Biomol NMR Assign ; 5(2): 125-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21132404

RESUMO

The Protein Kinase C family of enzymes is a group of serine/threonine kinases that play central roles in cell-cycle regulation, development and cancer. A key step in the activation of PKC is translocation to membranes and binding of membrane-associated activators including diacylglycerol (DAG). Interaction of novel and conventional isotypes of PKC with DAG and phorbol esters occurs through the two C1 regulatory domains (C1A and C1B), which exhibit distinct ligand binding selectivity that likely controls enzyme activation by different co-activators. PKC has also been implicated in physiological responses to alcohol consumption and it has been proposed that PKCα (Slater et al. J Biol Chem 272(10):6167-6173, 1997; Slater et al. Biochemistry 43(23):7601-7609, 2004), PKCε (Das et al. Biochem J 421(3):405-413, 2009) and PKCδ (Das et al. J Biol Chem 279(36):37964-37972, 2004; Das et al. Protein Sci 15(9):2107-2119, 2006) contain specific alcohol-binding sites in their C1 domains. We are interested in understanding how ethanol affects signal transduction processes through its affects on the structure and function of the C1 domains of PKC. Here we present the (1)H, (15)N and (13)C NMR chemical shift assignments for the Rattus norvegicus PKCδ C1A and C1B proteins.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteína Quinase C-delta/química , Sequência de Aminoácidos , Animais , Isótopos de Carbono/química , Diglicerídeos , Hidrogênio/química , Dados de Sequência Molecular , Isótopos de Nitrogênio/química , Estrutura Terciária de Proteína , Ratos , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA