Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 326
Filtrar
3.
Commun Biol ; 7(1): 919, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39079981

RESUMO

Retinoblastoma are childhood eye tumors arising from retinal precursor cells. Two distinct retinoblastoma subtypes with different clinical behavior have been described based on gene expression and methylation profiling. Using consensus clustering of DNA methylation analysis from 61 retinoblastomas, we identify a MYCN-driven cluster of subtype 2 retinoblastomas characterized by DNA hypomethylation and high expression of genes involved in protein synthesis. Subtype 2 retinoblastomas outside the MYCN-driven cluster are characterized by high expression of genes from mesodermal development, including NKX2-5. Knockdown of MYCN expression in retinoblastoma cell models causes growth arrest and reactivates a subtype 1-specific photoreceptor signature. These molecular changes suggest that removing the driving force of MYCN oncogenic activity rescues molecular circuitry driving subtype 1 biology. The MYCN-RB gene signature generated from the cell models better identifies MYCN-driven retinoblastoma than MYCN amplification and can identify cases that may benefit from MYCN-targeted therapy. MYCN drives tumor progression in a molecularly defined retinoblastoma subgroup, and inhibiting MYCN activity could restore a more differentiated and less aggressive tumor biology.


Assuntos
Proteína Proto-Oncogênica N-Myc , Retinoblastoma , Humanos , Retinoblastoma/genética , Retinoblastoma/patologia , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Metilação de DNA , Neoplasias da Retina/genética , Neoplasias da Retina/patologia , Neoplasias da Retina/metabolismo , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Desdiferenciação Celular/genética , Feminino , Masculino , Pré-Escolar
4.
Acta Neuropathol ; 147(1): 95, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847845

RESUMO

The non-WNT/non-SHH (Grp3/Grp4) medulloblastomas (MBs) include eight second-generation subgroups (SGS; I-VIII) each with distinct molecular and clinical characteristics. Recently, we also identified two prognostically relevant transcriptome subtypes within each SGS MB, which are associated with unique gene expression signatures and signaling pathways. These prognostic subsets may be in connection to the intra-tumoral cell landscape that underlies SGS MB clinical-molecular diversity. Here, we performed a deconvolution analysis of the Grp3/Grp4 MB bulk RNA profiles using the previously identified single-cell RNA-seq reference dataset and focusing on variability in the cellular composition of SGS MB. RNA deconvolution analysis of the Grp3/Grp4 MB disclosed the subgroup-specific neoplastic cell subpopulations. Neuronally differentiated axodendritic GP3-C1 and glutamatergic GP4-C1 subpopulations were distributed within Grp3- and Grp4-associated SGS MB, respectively. Progenitor GP3-B2 subpopulation was prominent in aggressive SGS II MB, whereas photoreceptor/visual perception GP3/4-C2 cell content was typical for SGS III/IV MB. The current study also revealed significant variability in the proportions of cell subpopulations between clinically relevant SGS MB transcriptome subtypes, where unfavorable cohorts were enriched with cell cycle and progenitor-like cell subpopulations and, vice versa, favorable subtypes were composed of neuronally differentiated cell fractions predominantly. A higher than median proportion of proliferating and progenitor cell subpopulations conferred the shortest survival of the Grp3 and Grp 4 MB, and similar survival associations were identified for all SGS MB except SGS IV MB. In summary, the recently identified clinically relevant Grp3/Grp4 MB transcriptome subtypes are composed of different cell populations. Future studies should aim to validate the prognostic and therapeutic role of the identified Grp3/Grp4 MB inter-tumoral cellular heterogeneity. The application of the single-cell techniques on each SGS MB separately could help to clarify the clinical significance of subgroup-specific variability in tumor cell content and its relation with prognostic transcriptome signatures identified before.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Transcriptoma , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Neoplasias Cerebelares/metabolismo , Proliferação de Células/genética , Masculino , Criança , Feminino , Pré-Escolar , Adolescente , Prognóstico
5.
Mol Cancer ; 23(1): 123, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849845

RESUMO

BACKGROUND: Pediatric-type diffuse high-grade glioma (pHGG) is the most frequent malignant brain tumor in children and can be subclassified into multiple entities. Fusion genes activating the MET receptor tyrosine kinase often occur in infant-type hemispheric glioma (IHG) but also in other pHGG and are associated with devastating morbidity and mortality. METHODS: To identify new treatment options, we established and characterized two novel orthotopic mouse models harboring distinct MET fusions. These included an immunocompetent, murine allograft model and patient-derived orthotopic xenografts (PDOX) from a MET-fusion IHG patient who failed conventional therapy and targeted therapy with cabozantinib. With these models, we analyzed the efficacy and pharmacokinetic properties of three MET inhibitors, capmatinib, crizotinib and cabozantinib, alone or combined with radiotherapy. RESULTS: Capmatinib showed superior brain pharmacokinetic properties and greater in vitro and in vivo efficacy than cabozantinib or crizotinib in both models. The PDOX models recapitulated the poor efficacy of cabozantinib experienced by the patient. In contrast, capmatinib extended survival and induced long-term progression-free survival when combined with radiotherapy in two complementary mouse models. Capmatinib treatment increased radiation-induced DNA double-strand breaks and delayed their repair. CONCLUSIONS: We comprehensively investigated the combination of MET inhibition and radiotherapy as a novel treatment option for MET-driven pHGG. Our seminal preclinical data package includes pharmacokinetic characterization, recapitulation of clinical outcomes, coinciding results from multiple complementing in vivo studies, and insights into molecular mechanism underlying increased efficacy. Taken together, we demonstrate the groundbreaking efficacy of capmatinib and radiation as a highly promising concept for future clinical trials.


Assuntos
Neoplasias Encefálicas , Glioma , Proteínas Proto-Oncogênicas c-met , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Humanos , Glioma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Glioma/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Camundongos , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Feminino , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Piridinas/farmacologia , Piridinas/uso terapêutico , Crizotinibe/farmacologia , Crizotinibe/uso terapêutico , Modelos Animais de Doenças , Criança , Gradação de Tumores , Anilidas/farmacologia , Imidazóis , Triazinas
6.
J Neurooncol ; 168(2): 317-332, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38630384

RESUMO

INTRODUCTION: Patients with pediatric low-grade gliomas (pLGGs), the most common primary brain tumors in children, can often benefit from MAPK inhibitor (MAPKi) treatment. However, rapid tumor regrowth, also referred to as rebound growth, may occur once treatment is stopped, constituting a significant clinical challenge. METHODS: Four patient-derived pediatric glioma models were investigated to model rebound growth in vitro based on viable cell counts in response to MAPKi treatment and withdrawal. A multi-omics dataset (RNA sequencing and LC-MS/MS based phospho-/proteomics) was generated to investigate possible rebound-driving mechanisms. Following in vitro validation, putative rebound-driving mechanisms were validated in vivo using the BT-40 orthotopic xenograft model. RESULTS: Of the tested models, only a BRAFV600E-driven model (BT-40, with additional CDKN2A/Bdel) showed rebound growth upon MAPKi withdrawal. Using this model, we identified a rapid reactivation of the MAPK pathway upon MAPKi withdrawal in vitro, also confirmed in vivo. Furthermore, transient overactivation of key MAPK molecules at transcriptional (e.g. FOS) and phosphorylation (e.g. pMEK) levels, was observed in vitro. Additionally, we detected increased expression and secretion of cytokines (CCL2, CX3CL1, CXCL10 and CCL7) upon MAPKi treatment, maintained during early withdrawal. While increased cytokine expression did not have tumor cell intrinsic effects, presence of these cytokines in conditioned media led to increased attraction of microglia cells in vitro. CONCLUSION: Taken together, these data indicate rapid MAPK reactivation upon MAPKi withdrawal as a tumor cell intrinsic rebound-driving mechanism. Furthermore, increased secretion of microglia-recruiting cytokines may play a role in treatment response and rebound growth upon withdrawal, warranting further evaluation.


Assuntos
Neoplasias Encefálicas , Citocinas , Glioma , Microglia , Mutação , Inibidores de Proteínas Quinases , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Microglia/metabolismo , Microglia/efeitos dos fármacos , Glioma/metabolismo , Glioma/tratamento farmacológico , Glioma/patologia , Glioma/genética , Citocinas/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Inibidores de Proteínas Quinases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Criança , Camundongos , Proliferação de Células/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
7.
Free Neuropathol ; 52024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38532825

RESUMO

The morphological patterns leading to the diagnosis of glioblastoma may also commonly be observed in several other distinct tumor entities, which can result in a mixed bag of tumors subsumed under this diagnosis. The 2021 WHO Classification of CNS Tumors has separated several of these entities from the diagnosis of glioblastoma, IDH-wildtype. This study determines the DNA methylation classes most likely receiving the diagnosis glioblastoma, IDH wildtype according to the definition by the WHO 2021 Classification and provides comparative copy number analyses. We identified 10782 methylome datasets uploaded to the web page www.molecularneuropathology.org with a calibrated score of ≥0.9 by the Heidelberg Brain Tumor Classifier version v12.8. These methylation classes were characterized by the diagnosis glioblastoma being the most frequent classification encountered in each of the classes according to the WHO 2021 definition. Further, methylation classes selected for this study predominantly contained adult patients. Unsupervised clustering confirmed the presence of nine methylation classes containing tumors most likely receiving the diagnosis glioblastoma, IDH-wildtype according to the WHO 2021 definition. Copy number analysis and a focus on genes with typical numerical alterations in glioblastoma revealed clear differences between the nine methylation classes. Although great progress in diagnostic precision has been achieved over the last decade, our data clearly demonstrate that glioblastoma, IDH-wildtype still is a heterogeneous group in need of further stratification.

8.
Sci Rep ; 14(1): 3118, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326438

RESUMO

In this study, we provide a comprehensive clinical and molecular biological characterization of radiation-induced gliomas (RIG), including a risk assessment for developing gliomas. A cohort of 12 patients who developed RIG 9.5 years (3-31 years) after previous cranial radiotherapy for brain tumors or T-cell acute lymphoblastic leukemia was established. The derived risk of RIG development based on our consecutive cohort of 371 irradiated patients was 1.6% at 10 years and 3.02% at 15 years. Patients with RIG glioma had a dismal prognosis with a median survival of 7.3 months. We described radiology features that might indicate the suspicion of RIG rather than the primary tumor recurrence. Typical molecular features identified by molecular biology examination included the absence of Histon3 mutation, methylation profile of pedHGG-RTK1 and the presence of recurrent PDGFRA amplification and CDKN2A/B deletion. Of the two long-term surviving patients, one had gliomatosis cerebri, and the other had pleomorphic xanthoastrocytoma with BRAF V600E mutation. In summary, our experience highlights the need for tissue diagnostics to allow detailed molecular biological characterization of the tumor, differentiation of the secondary tumor from the recurrence of the primary disease and potentially finding a therapeutic target.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Glioma/genética , Glioma/radioterapia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Astrocitoma/patologia , Mutação
9.
Clin Neurol Neurosurg ; 237: 108123, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38262154

RESUMO

INTRODUCTION: Enlarged perivascular spaces (ePVS) may be an indicator of glymphatic dysfunction. Limited studies have evaluated the role of ePVS in idiopathic normal pressure hydrocephalus (iNPH). We aimed to characterize the distribution and number of ePVS in iNPH compared to controls. METHODS: Thirty-eight patients with iNPH and a pre-shunt MRI were identified through clinical practice. Age- and sex-matched controls who had negative MRIs screening for intracranial metastases were identified through a medical record linkage system. The number of ePVS were counted in the basal nuclei (BN) and centrum semiovale (CS) using the Wardlaw method blinded to clinical diagnosis. Imaging features of disproportionately enlarged subarachnoid space hydrocephalus (DESH), callosal angle, Fazekas white matter hyperintensity (WMH) grade, and the presence of microbleeds and lacunes were also evaluated. RESULTS: Both iNPH patients and controls had a mean age of 74 ± 7 years and were 34% female with equal distributions of hypertension, dyslipidemia, diabetes, stroke, and history of smoking. There were fewer ePVS in the CS of patients with iNPH compared to controls (12.66 vs. 20.39, p < 0.001) but the same in the BN (8.95 vs. 11.11, p = 0.08). This remained significant in models accounting for vascular risk factors (p = 0.002) and MRI features of DESH and WMH grade (p = 0.03). CONCLUSIONS: Fewer centrum semiovale ePVS may be a biomarker for iNPH. This pattern may be caused by mechanical obstruction due to upward displacement of the brain leading to reduced glymphatic clearance.


Assuntos
Hidrocefalia de Pressão Normal , Malformações do Sistema Nervoso , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Hidrocefalia de Pressão Normal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo , Corpo Caloso , Gânglios da Base
10.
BMC Cancer ; 24(1): 147, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291372

RESUMO

BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.


Assuntos
Vaga-Lumes , Glioma , Animais , Criança , Humanos , Adulto Jovem , Vaga-Lumes/metabolismo , Proteínas Proto-Oncogênicas B-raf , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , Resultado do Tratamento , Mutação , Proteínas Quinases Ativadas por Mitógeno , Oximas , Piridonas , Pirimidinonas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
11.
Nat Commun ; 15(1): 269, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191550

RESUMO

Medulloblastomas with extensive nodularity are cerebellar tumors characterized by two distinct compartments and variable disease progression. The mechanisms governing the balance between proliferation and differentiation in MBEN remain poorly understood. Here, we employ a multi-modal single cell transcriptome analysis to dissect this process. In the internodular compartment, we identify proliferating cerebellar granular neuronal precursor-like malignant cells, along with stromal, vascular, and immune cells. In contrast, the nodular compartment comprises postmitotic, neuronally differentiated malignant cells. Both compartments are connected through an intermediate cell stage resembling actively migrating CGNPs. Notably, we also discover astrocytic-like malignant cells, found in proximity to migrating and differentiated cells at the transition zone between the two compartments. Our study sheds light on the spatial tissue organization and its link to the developmental trajectory, resulting in a more benign tumor phenotype. This integrative approach holds promise to explore intercompartmental interactions in other cancers with varying histology.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Meduloblastoma/genética , Diferenciação Celular , Neoplasias Cerebelares/genética , Progressão da Doença , Técnicas Histológicas
12.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244574

RESUMO

MOTIVATION: Copy-number variations (CNVs) are common genetic alterations in cancer and their detection may impact tumor classification and therapeutic decisions. However, detection of clinically relevant large and focal CNVs remains challenging when sample material or resources are limited. This has motivated us to create a software tool to infer CNVs from DNA methylation arrays which are often generated as part of clinical routines and in research settings. RESULTS: We present our R package, conumee 2.0, that combines tangent normalization, an adjustable genomic binning heuristic, and weighted circular binary segmentation to utilize DNA methylation arrays for CNV analysis and mitigate technical biases and batch effects. Segmentation results were validated in a lung squamous cell carcinoma dataset from TCGA (n = 367 samples) by comparison to segmentations derived from genotyping arrays (Pearson's correlation coefficient of 0.91). We further introduce a segmented block bootstrapping approach to detect focal alternations that achieved 60.9% sensitivity and 98.6% specificity for deletions affecting CDKN2A/B (60.0% and 96.9% for RB1, respectively) in a low-grade glioma cohort from TCGA (n = 239 samples). Finally, our tool provides functionality to detect and summarize CNVs across large sample cohorts. AVAILABILITY AND IMPLEMENTATION: Conumee 2.0 is available under open-source license at: https://github.com/hovestadtlab/conumee2.


Assuntos
Metilação de DNA , Neoplasias , Humanos , Animais , Camundongos , Software , Variações do Número de Cópias de DNA , Neoplasias/genética , Genômica , Algoritmos
13.
J Neurooncol ; 166(2): 359-368, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38253790

RESUMO

PURPOSE: To provide a treatment-focused review and develop basic treatment guidelines for patients diagnosed with pineal anlage tumor (PAT). METHODS: Prospectively collected data of three patients with pineal anlage tumor from Germany was combined with clinical details and treatment information from 17 published cases. RESULTS: Overall, 20 cases of PAT were identified (3 not previously reported German cases, 17 cases from published reports). Age at diagnosis ranged from 0.3 to 35.0 (median: 3.2 ± 7.8) years. All but three cases were diagnosed before the age of three years. For three cases, metastatic disease at initial staging was described. All patients underwent tumor surgery (gross-total resection: 9, subtotal resection/biopsy: 9, extent of resection unknown: 2). 15/20 patients were alive at last follow-up. Median follow-up for 10/15 surviving patients with available follow-up and treatment data was 2.4 years (0.3-6.5). Relapse was reported for 3 patients within 0.8 years after diagnosis. Five patients died, 3 after relapse and 2 from early postoperative complications. Two-year-progression-free- and -overall survival were 65.2 ± 12.7% and 49.2 ± 18.2%, respectively. All 4 patients who received intensive chemotherapy including high-dose chemotherapy combined with radiotherapy (2 focal, 2 craniospinal [CSI]) had no recurrence. Focal radiotherapy- and CSI-free survival rates in 13 evaluable patients were 46.2% (6/13) and 61.5% (8/13), respectively. CONCLUSION: PAT is an aggressive disease mostly affecting young children. Therefore, adjuvant therapy using intensive chemotherapy and considering radiotherapy appears to comprise an appropriate treatment strategy. Reporting further cases is crucial to evaluate distinct treatment strategies.


Assuntos
Neoplasias Encefálicas , Glândula Pineal , Pinealoma , Neoplasias Supratentoriais , Adolescente , Adulto , Criança , Pré-Escolar , Humanos , Lactente , Adulto Jovem , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Recidiva Local de Neoplasia/patologia , Glândula Pineal/cirurgia , Glândula Pineal/patologia , Pinealoma/diagnóstico , Pinealoma/cirurgia , Recidiva , Neoplasias Supratentoriais/patologia , Resultado do Tratamento
14.
Neuro Oncol ; 26(1): 25-37, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944912

RESUMO

The most common childhood central nervous system (CNS) tumor is pediatric low-grade glioma (pLGG), representing 30%-40% of all CNS tumors in children. Although there is high associated morbidity, tumor-related mortality is relatively rare. pLGG is now conceptualized as a chronic disease, underscoring the importance of functional outcomes and quality-of-life measures. A wealth of data has emerged about these tumors, including a better understanding of their natural history and their molecular drivers, paving the way for the use of targeted inhibitors. While these treatments have heralded tremendous promise, challenges remain about how to best optimize their use, and the long-term toxicities associated with these inhibitors remain unknown. The International Pediatric Low-Grade Glioma Coalition (iPLGGc) is a global group of physicians and scientists with expertise in pLGG focused on addressing key pLGG issues. Here, the iPLGGc provides an overview of the current state-of-the-art in pLGG, including epidemiology, histology, molecular landscape, treatment paradigms, survival outcomes, functional outcomes, imaging response, and ongoing challenges. This paper also serves as an introduction to 3 other pLGG manuscripts on (1) pLGG preclinical models, (2) consensus framework for conducting early-phase clinical trials in pLGG, and (3) pLGG resistance, rebound, and recurrence.


Assuntos
Neoplasias Encefálicas , Glioma , Criança , Humanos , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/patologia , Glioma/terapia , Glioma/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf
15.
J Neurooncol ; 165(3): 467-478, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37999877

RESUMO

PURPOSE: Although pediatric low-grade gliomas (pLGG) are the most common pediatric brain tumors, patient-derived cell lines reflecting pLGG biology in culture are scarce. This also applies to the most common pLGG subtype pilocytic astrocytoma (PA). Conventional cell culture approaches adapted from higher-grade tumors fail in PA due to oncogene-induced senescence (OIS) driving tumor cells into arrest. Here, we describe a PA modeling workflow using the Simian Virus large T antigen (SV40-TAg) to circumvent OIS. METHODS: 18 pLGG tissue samples (17 (94%) histological and/or molecular diagnosis PA) were mechanically dissociated. Tumor cell positive-selection using A2B5 was perfomed in 8/18 (44%) cases. All primary cell suspensions were seeded in Neural Stem Cell Medium (NSM) and Astrocyte Basal Medium (ABM). Resulting short-term cultures were infected with SV40-TAg lentivirus. Detection of tumor specific alterations (BRAF-duplication and BRAF V600E-mutation) by digital droplet PCR (ddPCR) at defined time points allowed for determination of tumor cell fraction (TCF) and evaluation of the workflow. DNA-methylation profiling and gene-panel sequencing were used for molecular profiling of primary samples. RESULTS: Primary cell suspensions had a mean TCF of 55% (+/- 23% (SD)). No sample in NSM (0/18) and ten samples in ABM (10/18) were successfully transduced. Three of these ten (30%) converted into long-term pLGG cell lines (TCF 100%), while TCF declined to 0% (outgrowth of microenvironmental cells) in 7/10 (70%) cultures. Young patient age was associated with successful model establishment. CONCLUSION: A subset of primary PA cultures can be converted into long-term cell lines using SV40-TAg depending on sample intrinsic (patient age) and extrinsic workflow-related (e.g. type of medium, successful transduction) parameters. Careful monitoring of sample-intrinsic and extrinsic factors optimizes the process.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Criança , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Fluxo de Trabalho , Astrocitoma/patologia , Glioma/patologia , Neoplasias Encefálicas/patologia
16.
Nat Commun ; 14(1): 7717, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38001143

RESUMO

Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.


Assuntos
Glioma , Neuroblastoma , Humanos , Criança , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Modelos Animais de Doenças , Glioma/genética , Mutação , Amplificação de Genes
17.
Free Neuropathol ; 42023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38026572

RESUMO

Pleomorphic xanthoastrocytoma (PXA) poses a diagnostic challenge. The present study relies on methylation-based predictions and focuses on copy number variations (CNV) in PXA. We identified 551 tumors from patients having received the histologic diagnosis or differential diagnosis pleomorphic xanthoastrocytoma (PXA) uploaded to the web page www.molecularneuropathology.org. Of these 551 tumors, 165 received the prediction "methylation class (anaplastic) pleomorphic xanthoastrocytoma" with a calibrated score >=0.9 by the brain tumor classifier version v12.8 and, therefore, were defined the PXA reference set designated mcPXAref. In addition to these 165 mcPXAref, 767 other tumors received the prediction mcPXA with a calibrated score >=0.9 but without a histological PXA diagnosis. The total number of individual tumors predicted by histology and/or by methylome based classification as PXA, mcPXA or both was 1318, and these were designated the study cohort. The selection of a control cohort was guided by methylation-based predictions recurrently observed for the other 386/551 tumors diagnosed as histologic PXA. 131/386 received predictions for another entity besides PXA with a score >=0.9. Control tumors corresponding to the 11 most common other predictions were selected, adding up to 1100 reference cases. CNV profiles were calculated from all methylation datasets of the study and control cohorts. Special attention was given to the 7/10 signature, gene amplifications and homozygous deletion of CDKN2A/B. Comparison of CNV in the subsets of the study cohort and the control cohort were used to establish relations independent of histological diagnoses. Tumors in mcPXA were highly homogenous in regard to CNV alterations, irrespective of the histological diagnoses. The 7/10 signature commonly present in glioblastoma, IDH-wildtype, was present in 15-20% of mcPXA, whereas amplification of oncogenes (likewise common in glioblastoma) was very rare in mcPXA (<1%). In contrast, the histology-based PXA group exhibited high variance in regard to methylation classes as well as to CNVs. Our data add to the notion, that histologically defined PXA likely only represent a subset of the biological disease.

18.
Genome Med ; 15(1): 67, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679810

RESUMO

BACKGROUND: Cancer immunotherapies including immune checkpoint inhibitors and Chimeric Antigen Receptor (CAR) T-cell therapy have shown variable response rates in paediatric patients highlighting the need to establish robust biomarkers for patient selection. While the tumour microenvironment in adults has been widely studied to delineate determinants of immune response, the immune composition of paediatric solid tumours remains relatively uncharacterized calling for investigations to identify potential immune biomarkers. METHODS: To inform immunotherapy approaches in paediatric cancers with embryonal origin, we performed an immunogenomic analysis of RNA-seq data from 925 treatment-naïve paediatric nervous system tumours (pedNST) spanning 12 cancer types from three publicly available data sets. RESULTS: Within pedNST, we uncovered four broad immune clusters: Paediatric Inflamed (10%), Myeloid Predominant (30%), Immune Neutral (43%) and Immune Desert (17%). We validated these clusters using immunohistochemistry, methylation immune inference and segmentation analysis of tissue images. We report shared biology of these immune clusters within and across cancer types, and characterization of specific immune cell frequencies as well as T- and B-cell repertoires. We found no associations between immune infiltration levels and tumour mutational burden, although molecular cancer entities were enriched within specific immune clusters. CONCLUSIONS: Given the heterogeneity of immune infiltration within pedNST, our findings suggest personalized immunogenomic profiling is needed to guide selection of immunotherapeutic strategies.


Assuntos
Neoplasias do Sistema Nervoso , Adulto , Humanos , Criança , Linfócitos B , Inibidores de Checkpoint Imunológico , Imunoterapia , Microambiente Tumoral/genética
20.
Neuro Oncol ; 25(10): 1895-1909, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534924

RESUMO

BACKGROUND: Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS: We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS: We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION: Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."


Assuntos
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelares , Ependimoma , Glioma , Meduloblastoma , Criança , Humanos , Animais , Camundongos , Meduloblastoma/genética , Meduloblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Astrocitoma/genética , Ependimoma/genética , Ependimoma/patologia , Cerebelo/patologia , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA