Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38730612

RESUMO

High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.

2.
Clin Infect Dis ; 78(2): 453-456, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-37805935

RESUMO

Chagas disease (CD), caused by Trypanosoma cruzi, is underdiagnosed in the United States. Improved screening strategies are needed, particularly for people at risk for life-threatening sequelae of CD, including people with human immunodeficiency virus (HIV, PWH). Here we report results of a CD screening strategy applied at a large HIV clinic serving an at-risk population.


Assuntos
Doença de Chagas , Infecções por HIV , Trypanosoma cruzi , Humanos , Estados Unidos/epidemiologia , HIV , Doença de Chagas/diagnóstico , Doença de Chagas/epidemiologia , Doença de Chagas/complicações , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Infecções por HIV/complicações
3.
Microbiol Spectr ; 11(3): e0019923, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140369

RESUMO

Alterations caused by Trypanosoma cruzi in the composition of gut microbiome may play a vital role in the host-parasite interactions that shapes physiology and immune responses against infection. Thus, a better understanding of this parasite-host-microbiome interaction may yield relevant information in the comprehension of the pathophysiology of the disease and the development of new prophylactic and therapeutic alternatives. Therefore, we implemented a murine model with two mice strains (BALB/c and C57BL/6) to evaluate the impact of Trypanosoma cruzi (Tulahuen strain) infection on the gut microbiome utilizing cytokine profiling and shotgun metagenomics. Higher parasite burdens were observed in cardiac and intestinal tissues, including changes in anti-inflammatory (interleukin-4 [IL-4] and IL-10) and proinflammatory (gamma interferon, tumor necrosis factor alpha, and IL-6) cytokines. Bacterial species such as Bacteroides thetaiotaomicron, Faecalibaculum rodentium, and Lactobacillus johnsonii showed a decrease in relative abundance, while Akkermansia muciniphila and Staphylococcus xylosus increased. Likewise, as infection progressed, there was a decrease in gene abundances related to metabolic processes such as lipid synthesis (including short-chain fatty acids) and amino acid synthesis (including branched-chain amino acids). High-quality metagenomic assembled genomes of L. johnsonii and A. muciniphila among other species were reconstructed, confirming, functional changes associated with metabolic pathways that are directly affected by the loss of abundance of specific bacterial taxa. IMPORTANCE Chagas disease (CD) is caused by the protozoan Trypanosoma cruzi, presenting acute and chronic phases where cardiomyopathy, megaesophagus, and/or megacolon stand out. During the course of its life cycle, the parasite has an important gastrointestinal tract transit that leads to severe forms of CD. The intestinal microbiome plays an essential role in the immunological, physiological, and metabolic homeostasis of the host. Therefore, parasite-host-intestinal microbiome interactions may provide information on certain biological and pathophysiological aspects related to CD. The present study proposes a comprehensive evaluation of the potential effects of this interaction based on metagenomic and immunological data from two mice models with different genetic, immunological, and microbiome backgrounds. Our findings suggest that there are alterations in the immune and microbiome profiles that affect several metabolic pathways that can potentially promote the infection's establishment, progression, and persistence. In addition, this information may prove essential in the research of new prophylactic and therapeutic alternatives for CD.


Assuntos
Doença de Chagas , Microbiota , Trypanosoma cruzi , Camundongos , Animais , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Doença de Chagas/parasitologia
4.
Mol Plant Microbe Interact ; 35(3): 257-273, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34931906

RESUMO

The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic 'Candidatus Liberibacter' spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. crescens LPS pretreatment suppressed growth of Xanthomonas perforans on nonhost tobacco (Nicotiana benthamiana) and X. citri subsp. citri on host orange (Citrus sinensis), confirming bioactivity of L. crescens LPS in activation of systemic acquired resistance (SAR). L. crescens LPS elicited a rapid burst of nitric oxide (NO) in suspension cultured tobacco cells. Pharmacological inhibitor assays confirmed that arginine-utilizing NO synthase (NOS) activity was the primary source of NO generation elicited by L. crescens LPS. LPS treatment also resulted in biological markers of NO-mediated SAR activation, including an increase in the glutathione pool, callose deposition, and activation of the salicylic acid and azelaic acid (AzA) signaling networks. Transient expression of 'Ca. L. asiaticus' bacterioferritin comigratory protein (BCP) peroxiredoxin in tobacco compromised AzA signaling, a prerequisite for LPS-triggered SAR. Western blot analyses revealed that 'Ca. L. asiaticus' BCP peroxiredoxin prevented peroxynitrite-mediated tyrosine nitration in tobacco. 'Ca. L. asiaticus' BCP peroxiredoxin (i) attenuates NO-mediated SAR signaling and (ii) scavenges peroxynitrite radicals, which would facilitate repetitive cycles of 'Ca. L. asiaticus' acquisition and transmission by fecund psyllids throughout the limited flush period in citrus.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Citrus , Rhizobiaceae , Proteínas de Bactérias , Citrus/microbiologia , Grupo dos Citocromos b , Ferritinas , Liberibacter , Lipopolissacarídeos/metabolismo , Estresse Nitrosativo , Peroxirredoxinas/metabolismo , Doenças das Plantas/microbiologia , Rhizobiaceae/metabolismo
5.
PLoS One ; 16(10): e0258583, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34644346

RESUMO

Axenically cultured Liberibacter crescens (Lcr) is a closely related surrogate for uncultured plant pathogenic species of the genus Liberibacter, including 'Candidatus L. asiaticus' (CLas) and 'Ca. L. solanacearum' (CLso). All Liberibacters encode a completely conserved gene repertoire for both flagella and Tad (Tight Adherence) pili and all are missing genes critical for nucleotide biosynthesis. Both flagellar swimming and Tad pilus-mediated twitching motility in Lcr were demonstrated for the first time. A role for Tad pili in the uptake of extracellular dsDNA for food in Liberibacters was suspected because both twitching and DNA uptake are impossible without repetitive pilus extension and retraction, and no genes encoding other pilus assemblages or mechanisms for DNA uptake were predicted to be even partially present in any of the 35 fully sequenced Liberibacter genomes. Insertional mutations of the Lcr Tad pilus genes cpaA, cpaB, cpaE, cpaF and tadC all displayed such severely reduced growth and viability that none could be complemented. A mutation affecting cpaF (motor ATPase) was further characterized and the strain displayed concomitant loss of twitching, viability and reduced periplasmic uptake of extracellular dsDNA. Mutations of comEC, encoding the inner membrane competence channel, had no effect on either motility or growth but completely abolished natural transformation in Lcr. The comEC mutation was restored by complementation using comEC from Lcr but not from CLas strain psy62 or CLso strain RS100, indicating that unlike Lcr, these pathogens were not naturally competent for transformation. This report provides the first evidence that the Liberibacter Tad pili are dynamic and essential for both motility and DNA uptake, thus extending their role beyond surface adherence.


Assuntos
DNA Bacteriano/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Citrus/microbiologia , Fímbrias Bacterianas/genética , Fímbrias Bacterianas/fisiologia , Liberibacter/genética , Liberibacter/crescimento & desenvolvimento , Liberibacter/fisiologia , Mutagênese Sítio-Dirigida , Doenças das Plantas/microbiologia , Alinhamento de Sequência
6.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28674032

RESUMO

Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8+ gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8+ IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Cardiomiopatia Chagásica/terapia , Imunoterapia/métodos , Vacinas/imunologia , Adenoviridae/genética , Animais , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Cardiomiopatia Chagásica/prevenção & controle , Células Dendríticas/imunologia , Modelos Animais de Doenças , Portadores de Fármacos , Feminino , Vetores Genéticos , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Transdução Genética , Resultado do Tratamento , Vacinas/administração & dosagem , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
7.
J Parasitol ; 103(5): 579-583, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28581897

RESUMO

B-cell superantigens (BC-SAgs) are immunoevasins that have evolved in response to innate catalytic IgM antibodies; germ-line encoded immunoglobulins present in the preimmune repertoire independent of prior antigen exposure. Catalysis is the result of a 2-step process that involves first the formation of a non-covalent bond between the BC-SAg and the immunoglobulin followed by covalent bond formation at the catalytic site resulting in target hydrolysis. Tc24 is a recently described Trypanosoma cruzi BC-SAg hypothesized to play a role in evading the humoral response early in the infection period. We previously demonstrated that exposure to Tc24 following immunization or infection resulted in the depletion of the catalytic IgM response, leaving a gap in the catalytic IgM repertoire. The present report compares the BC-SAg properties of wild-type Tc24 (Tc24-WT) to that of 2 recombinant Tc24 isoforms: Tc24-C2 (Cys to Ser mutations in the 2 most-proximal Cys residues) and Tc24-C4 (Cys to Ser mutations in all 4 Cys residues present). BC-SAg activity was assessed by immunizing mice with the respective isoforms and examining the ability of IgM purified from the respective groups to hydrolyze the 3 Tc24 isoforms. In addition, the ability of IgM purified from naive mice to hydrolyze the Tc24 isoforms was also assessed. Immunization with Tc24-WT, Tc24-C2, or Tc24-C4 resulted in loss of IgM-mediated hydrolysis of Tc24-WT. However, the ability of IgM purified from naive mice (previously shown to hydrolyze Tc24-WT) was less effective in hydrolyzing the 2 Tc24 isoforms. These data demonstrate that although the BC-SAg site in the mutants remained intact, their reduced susceptibility to IgM-mediated hydrolysis suggested that structural changes resulting from the Cys to Ser mutations altered accessibility to the catalytic site in the 2 isoforms.


Assuntos
Cisteína/genética , Imunoglobulina M/imunologia , Superantígenos/genética , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Linfócitos B/imunologia , Proteínas de Ligação ao Cálcio/imunologia , Doença de Chagas/imunologia , Cisteína/química , Hidrólise , Imunidade Inata/imunologia , Imunização , Camundongos , Mutação , Isoformas de Proteínas/imunologia , Vacinas Protozoárias , Alinhamento de Sequência , Serina/química , Serina/genética , Superantígenos/química , Superantígenos/imunologia
8.
Hum Vaccin Immunother ; 13(3): 621-633, 2017 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-27737611

RESUMO

A therapeutic vaccine for human Chagas disease is under development by the Sabin Vaccine Institute Product Development Partnership. The aim of the vaccine is to significantly reduce the parasite burden of Trypanosoma cruzi in humans, either as a standalone product or in combination with conventional chemotherapy. Vaccination of mice with Tc24 formulated with monophosphoryl-lipid A (MPLA) adjuvant results in a Th1 skewed immune response with elevated IgG2a and IFNγ levels and a statistically significant decrease in parasitemia following T. cruzi challenge. Tc24 was therefore selected for scale-up and further evaluation. During scale up and downstream process development, significant protein aggregation was observed due to intermolecular disulfide bond formation. To prevent protein aggregation, cysteine codons were replaced with serine codons which resulted in the production of a non-aggregated and soluble recombinant protein, Tc24-C4. No changes to the secondary structure of the modified molecule were detected by circular dichroism. Immunization of mice with wild-type Tc24 or Tc24-C4, formulated with E6020 (TLR4 agonist analog to MPLA) emulsified in a squalene-oil-in-water emulsion, resulted in IgG2a and antigen specific IFNγ production levels from splenocytes that were not significantly different, indicating that eliminating putative intermolecular disulfide bonds had no significant impact on the immunogenicity of the molecule. In addition, vaccination with either formulated wild type Tc24 or Tc24-C4 antigen also significantly increased survival and reduced cardiac parasite burden in mice. Investigations are now underway to examine the efficacy of Tc24-C4 formulated with other adjuvants to reduce parasite burden and increase survival in pre-clinical studies.


Assuntos
Doença de Chagas/prevenção & controle , Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Proteínas Recombinantes/imunologia , Trypanosoma cruzi/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antiprotozoários/sangue , Cisteína/genética , Modelos Animais de Doenças , Feminino , Coração/parasitologia , Interferon gama/metabolismo , Leucócitos Mononucleares/imunologia , Camundongos Endogâmicos BALB C , Mutagênese , Carga Parasitária , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/genética , Vacinas Protozoárias/administração & dosagem , Vacinas Protozoárias/genética , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/genética , Análise de Sobrevida , Trypanosoma cruzi/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA