Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Genet ; 12: 698825, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34484295

RESUMO

Background: The triad of drug efficacy, toxicity and resistance underpins the risk-benefit balance of all therapeutics. The application of pharmacogenomics has the potential to improve the risk-benefit balance of a given therapeutic via the stratification of patient populations based on DNA variants. A growth in the understanding of the particulars of the mitochondrial genome, alongside the availability of techniques for its interrogation has resulted in a growing body of literature examining the impact of mitochondrial DNA (mtDNA) variation upon drug response. Objective: To critically evaluate and summarize the available literature, across a defined period, in a systematic fashion in order to map out the current landscape of the subject area and identify how the field may continue to advance. Methods: A systematic review of the literature published between January 2009 and December 2020 was conducted using the PubMed database with the following key inclusion criteria: reference to specific mtDNA polymorphisms or haplogroups, a core objective to examine associations between mtDNA variants and drug response, and research performed using human subjects or human in vitro models. Results: Review of the literature identified 24 articles reporting an investigation of the association between mtDNA variant(s) and drug efficacy, toxicity or resistance that met the key inclusion criteria. This included 10 articles examining mtDNA variations associated with antiretroviral therapy response, 4 articles examining mtDNA variants associated with anticancer agent response and 4 articles examining mtDNA variants associated with antimicrobial agent response. The remaining articles covered a wide breadth of medications and were therefore grouped together and referred to as "other." Conclusions: Investigation of the impact of mtDNA variation upon drug response has been sporadic to-date. Collective assessment of the associations identified in the articles was inconclusive due to heterogeneous methods and outcomes, limited racial/ethnic groups, lack of replication and inadequate statistical power. There remains a high degree of idiosyncrasy in drug response and this area has the potential to explain variation in drug response in a clinical setting, therefore further research is likely to be of clinical benefit.

2.
Toxicol In Vitro ; 72: 105096, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33460737

RESUMO

Inhibition of dihydroorotate dehydrogenase (DHODH), the rate-limiting enzymatic step in de novo pyrimidine synthesis, has broad immunosuppressive effects in vivo and shows promise as a therapeutic target for the treatment of malignancies, viral infections and auto-immune diseases. Whilst there are numerous DHODH inhibitors under development, leflunomide and teriflunomide are the only FDA approved compounds on the market, each of which have been issued with black-box warnings for hepatotoxicity. Mitochondrial dysfunction is a putative mechanism by which teriflunomide and leflunomide elicit their hepatotoxic effects, however it is as yet unclear whether this is shared by other nascent DHODH inhibitors. The present study aimed to evaluate the propensity for DHODH inhibitors to mediate mitochondrial dysfunction in two hepatic in vitro models. Initial comparisons of cytotoxicity and ATP content in HepaRG® cells primed for oxidative metabolism, in tandem with mechanistic evaluations by extracellular flux analysis identified multifactorial toxicity and moderate indications of respiratory chain dysfunction or uncoupling. Further investigations using HepG2 cells, a hepatic line with limited capability for phase I xenobiotic metabolism, identified leflunomide and brequinar as positive mitochondrial toxicants. Taken together, biotransformation of some DHODH inhibitor species may play a role in mediating or masking hepatic mitochondrial liabilities.


Assuntos
Antineoplásicos/toxicidade , Imunossupressores/toxicidade , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Compostos de Bifenilo/toxicidade , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Crotonatos/toxicidade , Ácidos Dicarboxílicos/toxicidade , Di-Hidro-Orotato Desidrogenase , Humanos , Hidroxibutiratos/toxicidade , Leflunomida/toxicidade , Fígado/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Nitrilas/toxicidade , Salicilanilidas/toxicidade , Toluidinas/toxicidade , Triazóis/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA