Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 5(5): 101574, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38776873

RESUMO

The existing suite of therapies for bone diseases largely act to prevent further bone loss but fail to stimulate healthy bone formation and repair. We describe an endogenous osteopeptide (PEPITEM) with anabolic osteogenic activity, regulating bone remodeling in health and disease. PEPITEM acts directly on osteoblasts through NCAM-1 signaling to promote their maturation and formation of new bone, leading to enhanced trabecular bone growth and strength. Simultaneously, PEPITEM stimulates an inhibitory paracrine loop: promoting osteoblast release of the decoy receptor osteoprotegerin, which sequesters RANKL, thereby limiting osteoclast activity and bone resorption. In disease models, PEPITEM therapy halts osteoporosis-induced bone loss and arthritis-induced bone damage in mice and stimulates new bone formation in osteoblasts derived from patient samples. Thus, PEPITEM offers an alternative therapeutic option in the management of diseases with excessive bone loss, promoting an endogenous anabolic pathway to induce bone remodeling and redress the imbalance in bone turnover.


Assuntos
Reabsorção Óssea , Osteoblastos , Osteogênese , Animais , Humanos , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Camundongos , Reabsorção Óssea/patologia , Reabsorção Óssea/metabolismo , Anabolizantes/farmacologia , Anabolizantes/uso terapêutico , Remodelação Óssea/efeitos dos fármacos , Osteoporose/patologia , Osteoporose/metabolismo , Osteoporose/tratamento farmacológico , Ligante RANK/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efeitos dos fármacos , Desenvolvimento Ósseo/efeitos dos fármacos , Osteoprotegerina/metabolismo , Feminino , Transdução de Sinais/efeitos dos fármacos , Peptídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Osso e Ossos/patologia
2.
Toxics ; 10(9)2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36136470

RESUMO

Cigarette consumption negatively impacts bone quality and is a risk-factor for the development of multiple bone associated disorders, due to the highly vascularised structure of bone being exposed to systemic factors. However, the impact on bone to electronic cigarette (e-cigarette) use, which contains high doses of nicotine and other compounds including flavouring chemicals, metal particulates and carbonyls, is poorly understood. Here, we present the first evidence demonstrating the impact of e-cigarette vapour condensate (replicating changes in e-cigarette liquid chemical structure that occur upon device usage), on human primary osteoblast viability and function. 24 h exposure of osteoblasts to e-cigarette vapour condensate, generated from either second or third generation devices, significantly reduced osteoblast viability in a dose dependent manner, with condensate generated from the more powerful third generation device having greater toxicity. This effect was mediated in-part by nicotine, since exposure to nicotine-free condensate of an equal concentration had a less toxic effect. The detrimental effect of e-cigarette vapour condensate on osteoblast viability was rescued by co-treatment with the antioxidant N-Acetyl-L-cysteine (NAC), indicating toxicity may also be driven by reactive species generated upon device usage. Finally, non-toxic doses of either second or third generation condensate significantly blunted osteoblast osteoprotegerin secretion after 24 h, which was sustained for up to 7 days. In summary we demonstrate that e-cigarette vapour condensate, generated from commonly used second and third generation devices, can significantly reduce osteoblast viability and impair osteoblast function, at physiologically relevant doses. These data highlight the need for further investigation to inform users of the potential risks of e-cigarette use on bone health, including, accelerating bone associated disease progression, impacting skeletal development in younger users and to advise patients following orthopaedic surgery, dental surgery, or injury to maximise bone healing.

3.
Biochem Pharmacol ; 204: 115211, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35985403

RESUMO

Western diet (WD), high in sugar and fat, promotes obesity and associated chronic low-grade pro-inflammatory environment, leading to impaired immune function, reprogramming of innate and adaptive immune cells, and development of chronic degenerative diseases, including cardiovascular disease. Increased concentrations of circulating and tissue ceramides contribute to inflammation and cellular dysfunction common in immune metabolic and cardiometabolic disease. Therefore, ceramide-lowering interventions have been considered as strategies to improve adipose tissue health. Here, we report the ability of omega-3 polyunsaturated fatty acids (n-3PUFA) to attenuate inflammatory phenotypes promoted by WD, through ceramide-dependent pathways. Using an animal model, we show that enrichment of WD diet with n-3PUFA, reduced the expression of ceramide synthase 2 (CerS2), and lowered the concentration of long-chain ceramides (C23-C26) in plasma and adipose tissues. N-3PUFA also increased prevalence of the anti-inflammatory CD4+Foxp3+ and CD4+Foxp3+CD25+ Treg subtypes in lymphoid organs. The CerS inhibitor FTY720 mirrored the effect of n-3PUFA. Treatment of animal and human T cells with ceramide C24 in vitro, reduced CD4+Foxp3+ Treg polarisation and IL-10 production, and increased IL-17, while it decreased Erk and Akt phosphorylation downstream of T cell antigen receptors (TCR). These findings suggest that molecular mechanisms mediating the adverse effect of ceramides on regulatory T lymphocytes, progress through reduced TCR signalling. Our findings suggest that nutritional enrichment of WD with fish oil n-3PUFA can partially mitigate its detrimental effects, potentially improving the low-grade inflammation associated with immune metabolic disease. Compared to pharmacological interventions, n-3PUFA offer a simpler approach that can be accommodated as lifestyle choice.


Assuntos
Ácidos Graxos Ômega-3 , Linfócitos T Reguladores , Animais , Ceramidas , Dieta Ocidental , Ácidos Graxos Ômega-3/farmacologia , Cloridrato de Fingolimode , Óleos de Peixe , Fatores de Transcrição Forkhead , Humanos , Inflamação , Interleucina-10 , Interleucina-17 , Proteínas Proto-Oncogênicas c-akt , Açúcares
4.
Int J Mol Sci ; 23(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35328687

RESUMO

Changes in cellular metabolism have been implicated in mediating the activated fibroblast phenotype in a number of chronic inflammatory disorders, including pulmonary fibrosis, renal disease and rheumatoid arthritis. The aim of this study was therefore to characterise the metabolic profile of synovial joint fluid and synovial fibroblasts under both basal and inflammatory conditions in a cohort of obese and normal-weight hip OA patients. Furthermore, we sought to ascertain whether modulation of a metabolic pathway in OA synovial fibroblasts could alter their inflammatory activity. Synovium and synovial fluid was obtained from hip OA patients, who were either of normal-weight or obese and were undergoing elective joint replacement surgery. The synovial fluid metabolome was determined by 1H NMR spectroscopy. The metabolic profile of isolated synovial fibroblasts in vitro was characterised by lactate secretion, oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) using the Seahorse XF Analyser. The effects of a small molecule pharmacological inhibitor and siRNA targeted at glutaminase-1 (GLS1) were assessed to probe the role of glutamine metabolism in OA synovial fibroblast function. Obese OA patient synovial fluid (n = 5) exhibited a different metabotype, compared to normal-weight patient fluid (n = 6), with significantly increased levels of 1, 3-dimethylurate, N-Nitrosodimethylamine, succinate, tyrosine, pyruvate, glucose, glycine and lactate, and enrichment of the glutamine-glutamate metabolic pathway, which correlated with increasing adiposity. In vitro, isolated obese OA fibroblasts exhibited greater basal lactate secretion and aerobic glycolysis, and increased mitochondrial respiration when stimulated with pro-inflammatory cytokine TNFα, compared to fibroblasts from normal-weight patients. Inhibition of GLS1 attenuated the TNFα-induced expression and secretion of IL-6 in OA synovial fibroblasts. These findings suggest that altered cellular metabolism underpins the inflammatory phenotype of OA fibroblasts, and that targeted inhibition of glutamine-glutamate metabolism may provide a route to reducing the pathological effects of joint inflammation in OA patients who are obese.


Assuntos
Osteoartrite do Quadril , Células Cultivadas , Fibroblastos/metabolismo , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Humanos , Ácido Láctico/metabolismo , Obesidade/metabolismo , Osteoartrite do Quadril/patologia , Líquido Sinovial/metabolismo , Membrana Sinovial/patologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201564

RESUMO

Obesity increases the risk of hip osteoarthritis (OA). Recent studies have shown that adipokine extracellular nicotinamide phosphoribosyltransferase (eNAMPT or visfatin) induces the production of IL-6 and matrix metalloproteases (MMPs) in chondrocytes, suggesting it may promote articular cartilage degradation. However, neither the functional effects of extracellular visfatin on human articular cartilage tissue, nor its expression in the joint of hip OA patients of varying BMI, have been reported. Hip OA joint tissues were collected from patients undergoing joint replacement surgery. Cartilage explants were stimulated with recombinant human visfatin. Pro-inflammatory cytokines and MMPs were measured by ELISA and Luminex. Localisation of visfatin expression in cartilage tissue was determined by immunohistochemistry. Cartilage matrix degradation was determined by quantifying proteoglycan release. Expression of visfatin was elevated in the synovial tissue of hip OA patients who were obese, and was co-localised with MMP-13 in areas of cartilage damage. Visfatin promoted the degradation of hip OA cartilage proteoglycan and induced the production of pro-inflammatory cytokines (IL-6, MCP-1, CCL20, and CCL4) and MMPs. The elevated expression of visfatin in the obese hip OA joint, and its functional effects on hip cartilage tissue, suggests it plays a central role in the loss of cartilage integrity in obese patients with hip OA.


Assuntos
Cartilagem Articular/patologia , Citocinas/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Osteoartrite do Quadril/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/metabolismo , Quimiocinas/metabolismo , Condrócitos/metabolismo , Citocinas/sangue , Articulação do Quadril/metabolismo , Articulação do Quadril/fisiopatologia , Humanos , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinases da Matriz/metabolismo , Pessoa de Meia-Idade , NAD/metabolismo , Nicotinamida Fosforribosiltransferase/sangue , Obesidade/metabolismo , Técnicas de Cultura de Órgãos , Osteoartrite do Quadril/patologia , Proteoglicanas/metabolismo
6.
J Inflamm (Lond) ; 18(1): 16, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952248

RESUMO

BACKGROUND: In contrast to cigarettes, electronic cigarette use (E-cigarettes) has grown substantially over the last decade. This is due to their promotion as both a safer alternative to cigarettes and as an aide to stop smoking. Critically, upon E-cigarette use, the user may be exposed to high doses of nicotine in addition to other compounds including flavouring chemicals, metal particulates and carbonyl compounds, particularly in highly vascularised tissues such as bone. However, there has been limited investigation into the impact of E-cigarette usage on bone physiology, particularly over extended time periods and there are no clinical recommendations regarding E-cigarette usage in relation to orthopaedic surgery. This literature review draws together data from studies that have investigated the impact of E-cigarette vapour and its major constituents on bone, detailing the models utilised and the relevant mechanistic and functional results. MAIN BODY: Currently there is a lack of studies both in vivo and in vitro that have utilised E-cigarette vapour, necessary to account for changes in chemical composition of E-cigarette liquids upon vaping. There is however evidence that human bone and bone cells express nicotine receptors and exposure of both osteoblasts and osteoclasts to nicotine, in high concentrations may reduce their viability and impair function. Similarly, it appears that aldehydes and flavouring chemicals may also negatively impact osteoblast viability and their ability to form bone. However, such functional findings are predominantly the result of studies utilising bone cell lines such as MG-63 or Saos-2 cells, with limited use of human osteoblasts or osteoclasts. Additionally, there is limited consideration for a possible impact on mesenchymal stem cells, which can also play an import role in bone repair. CONCLUSION: Understanding the function and mechanism of action of the various components of E-cigarette vapour in mediating human bone cell function, in addition to long term studies to determine the potential harm of chronic E-cigarette use on human bone will be important to inform users of potential risks, particularly regarding bone healing following orthopaedic surgery and injury.

7.
Cells ; 10(4)2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916321

RESUMO

Metastasis Associated Lung Adenocarcinoma Transcript-1 (MALAT1) is implicated in regulating the inflammatory response and in the pathology of several chronic inflammatory diseases, including osteoarthritis (OA). The purpose of this study was to examine the relationship between OA subchondral bone expression of MALAT1 with parameters of joint health and biomarkers of joint inflammation, and to determine its functional role in human OA osteoblasts. Subchondral bone and blood were collected from hip and knee OA patients (n = 17) and bone only from neck of femur fracture patients (n = 6) undergoing joint replacement surgery. Cytokines were determined by multiplex assays and ELISA, and gene expression by qPCR. MALAT1 loss of function was performed in OA patient osteoblasts using locked nucleic acids. The osteoblast transcriptome was analysed by RNASeq and pathway analysis. Bone expression of MALAT1 positively correlated to serum DKK1 and galectin-1 concentrations, and in OA patient osteoblasts was induced in response to IL-1ß stimulation. Osteoblasts depleted of MALAT1 exhibited differential expression (>1.5 fold change) of 155 genes, including PTGS2. Both basal and IL-1ß-mediated PGE2 secretion was greater in MALAT1 depleted osteoblasts. The induction of MALAT1 in human OA osteoblasts upon inflammatory challenge and its modulation of PGE2 production suggests that MALAT1 may play a role in regulating inflammation in OA subchondral bone.


Assuntos
Osso e Ossos/metabolismo , Regulação da Expressão Gênica , Osteoartrite/genética , Osteoblastos/metabolismo , RNA Longo não Codificante/genética , Idoso , Calcificação Fisiológica/genética , Citocinas/sangue , Dinoprostona/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/sangue , Osteoprotegerina/metabolismo , RNA Longo não Codificante/metabolismo , Índice de Gravidade de Doença , Transcriptoma/genética
9.
FEBS J ; 288(19): 5555-5568, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33251764

RESUMO

Mesenchymal stromal fibroblasts have emerged as key mediators of the inflammatory response and drivers of localised inflammation, in part through their interactions with resident and circulating immune cells at inflammatory sites. As such, they have been implicated in a number of chronic inflammatory conditions as well as in tumour progression through modifying the microenvironment. The connection between metabolic changes and altered phenotype of fibroblasts in inflammatory microenvironments has clear implications for our understanding of how chronic inflammation is regulated and for the development of new anti-inflammatory therapeutics. In this review, we consider the evidence that changes to fibroblast metabolic state underpin chronic inflammation. We examine recent research on fibroblast metabolism in inflammatory microenvironments and consider their involvement in inflammation, providing insight into the role of fibroblasts and metabolism in mediating inflammatory disease progression namely cancer, arthritis and fibrotic disorders including chronic kidney disease, pulmonary fibrosis, heart disease and liver disease.


Assuntos
Fibroblastos/metabolismo , Inflamação/genética , Células-Tronco Mesenquimais/metabolismo , Doenças Metabólicas/genética , Microambiente Celular/genética , Fibroblastos/patologia , Cardiopatias/genética , Cardiopatias/metabolismo , Humanos , Inflamação/metabolismo , Inflamação/patologia , Hepatopatias/genética , Hepatopatias/metabolismo , Células-Tronco Mesenquimais/patologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Fibrose Pulmonar/genética , Fibrose Pulmonar/metabolismo , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo
10.
Burns ; 46(2): 259-266, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30826149

RESUMO

Obesity has become a world-wide pandemic and is considered a major risk factor for various diseases. Despite this, recent intriguing clinical observations have been made suggesting that being overweight has some advantages. Overweight and some obese patients were reported to have significantly lower all-cause mortality, described as the 'obesity paradox'. This phenomenon resulted in increased research aimed at investigating the influence of adipose tissue on outcomes of various clinical states including critical illness. In this review, we summarise research findings on the effect burn injury and trauma-related critical illness have on adipose tissue and discuss potential mechanisms by which adipose tissue influences outcomes in burn and other critically ill patients. Burn injury and critical illness influence adipose tissue functionally and morphologically, with circulating levels of fat derived hormones, adipokines, altered in patients following injury and/or critical illness. As adipokines regulate a variety of processes including inflammation and metabolism, this disruption in the adipokine axis may explain the obesity paradox phenomenon observed in critically ill patients. We conclude that further research on the influence of individual adipokines on prognosis in burn and critically ill patients and the mechanisms involved is required to increase understanding of their therapeutic potential.


Assuntos
Adipocinas/metabolismo , Tecido Adiposo/metabolismo , Queimaduras/metabolismo , Obesidade/metabolismo , Adipocinas/imunologia , Adiponectina/imunologia , Adiponectina/metabolismo , Tecido Adiposo/imunologia , Queimaduras/imunologia , Estado Terminal , Fibrose/imunologia , Fibrose/metabolismo , Grelina/imunologia , Grelina/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Leptina/imunologia , Leptina/metabolismo , Nicotinamida Fosforribosiltransferase/imunologia , Nicotinamida Fosforribosiltransferase/metabolismo , Obesidade/imunologia , Sobrepeso/imunologia , Sobrepeso/metabolismo , Resistina/imunologia , Resistina/metabolismo , Pele/imunologia , Pele/metabolismo , Cicatrização/imunologia , Cicatrização/fisiologia
11.
Arthritis Rheumatol ; 72(4): 609-619, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31682073

RESUMO

OBJECTIVE: To identify long noncoding RNAs (lncRNAs) associated with the inflammatory phenotype of synovial fibroblasts from obese patients with osteoarthritis (OA), and to explore the expression and function of these lncRNAs. METHODS: Synovium was collected from normal-weight patients with hip fracture (non-OA; n = 6) and from normal-weight (n = 8) and obese (n = 8) patients with hip OA. Expression of RNA was determined by RNA-sequencing and quantitative reverse transcription-polymerase chain reaction. Knockdown of lncRNA was performed using LNA-based GapmeRs. Synovial fibroblast cytokine production was measured by enzyme-linked immunosorbent assay. RESULTS: Synovial fibroblasts from obese patients with OA secreted greater levels of interleukin-6 (IL-6) (mean ± SEM 162 ± 21 pg/ml; P < 0.001) and CXCL8 (262 ± 67 pg/ml; P < 0.05) compared to fibroblasts from normal-weight patients with OA (IL-6, 51 ± 4 pg/ml; CXCL8, 78 ± 11 pg/ml) or non-OA patients (IL-6, 35 ± 3 pg/ml; CXCL8, 56 ± 6 pg/ml) (n = 6 patients per group). RNA-sequencing revealed that fibroblasts from obese OA patients exhibited an inflammatory transcriptome, with increased expression of proinflammatory messenger RNAs (mRNAs) as compared to that in fibroblasts from normal-weight OA or non-OA patients (>2-fold change, P < 0.05; n = 4 patients per group). A total of 19 lncRNAs were differentially expressed between normal-weight OA and non-OA patient fibroblasts, and a further 19 lncRNAs were differentially expressed in fibroblasts from obese OA patients compared to normal-weight OA patients (>2-fold change, P < 0.05 for each), which included the lncRNA for metastasis-associated lung adenocarcinoma transcript 1 (MALAT1). MALAT1 was rapidly induced upon stimulation of OA synovial fibroblasts with proinflammatory cytokines, and was up-regulated in the synovium from obese OA patients as compared to normal-weight OA patients (1.6-fold change, P < 0.001) or non-OA patients (6-fold change, P < 0.001). MALAT1 knockdown in OA synovial fibroblasts (n = 4 patients) decreased the levels of mRNA expression and protein secretion of CXCL8 (>1.5-fold change, P < 0.01), whereas it increased expression of mRNAs for TRIM6 (>2-fold change, P < 0.01), IL7R (<2-fold change, P < 0.01), HIST1H1C (>1.5-fold change, P < 0.001), and MAML3 (>1.5-fold change, P < 0.001). In addition, MALAT1 knockdown inhibited the proliferation of synovial fibroblasts from obese patients with OA. CONCLUSION: Synovial fibroblasts from obese patients with hip OA exhibit an inflammatory phenotype. MALAT1 lncRNA may mediate joint inflammation in obese OA patients.


Assuntos
Fibroblastos/metabolismo , Interleucina-6/metabolismo , Obesidade/metabolismo , Osteoartrite do Quadril/metabolismo , RNA Longo não Codificante/metabolismo , Membrana Sinovial/metabolismo , Idoso , Proliferação de Células/fisiologia , Feminino , Humanos , Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/complicações , Osteoartrite do Quadril/complicações
12.
BMC Musculoskelet Disord ; 20(1): 575, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31785617

RESUMO

BACKGROUND: Despite it being known that subchondral bone affects the viscoelasticity of cartilage, there has been little research into the mechanical properties of osteochondral tissue as a whole system. This study aims to unearth new knowledge concerning the dynamic behaviour of human subchondral bone and how energy is transferred through the cartilage-bone interface. METHODS: Dynamic mechanical analysis was used to determine the frequency-dependent (1-90 Hz) viscoelastic properties of the osteochondral unit (cartilage-bone system) as well as isolated cartilage and bone specimens extracted from human femoral heads obtained from patients undergoing total hip replacement surgery, with a mean age of 78 years (N = 5, n = 22). Bone mineral density (BMD) was also determined for samples using micro-computed tomography as a marker of tissue health. RESULTS: Cartilage storage and loss moduli along with bone storage modulus were found to increase logarithmically (p < 0.05) with frequency. The mean cartilage storage modulus was 34.4 ± 3.35 MPa and loss modulus was 6.17 ± 0.48 MPa (mean ± standard deviation). In contrast, bone loss modulus decreased logarithmically between 1 and 90 Hz (p < 0.05). The storage stiffness of the cartilage-bone-core was found to be frequency-dependent with a mean value of 1016 ± 54.0 N.mm- 1, while the loss stiffness was determined to be frequency-independent at 78.84 ± 2.48 N.mm- 1. Notably, a statistically significant (p < 0.05) linear correlation was found between the total energy dissipated from the isolated cartilage specimens, and the BMD of the isolated bone specimens at all frequencies except at 90 Hz (p = 0.09). CONCLUSIONS: The viscoelastic properties of the cartilage-bone core were significantly different to the tissues in isolation (p < 0.05). Results from this study demonstrate that the functionality of these tissues arises because they operate as a unit. This is evidenced through the link between cartilage energy dissipated and bone BMD. The results may provide insights into the functionality of the osteochondral unit, which may offer further understanding of disease progression, such as osteoarthritis (OA). Furthermore, the results emphasise the importance of studying human tissue, as bovine models do not always display the same trends.


Assuntos
Densidade Óssea/fisiologia , Cartilagem Articular/patologia , Cartilagem Articular/fisiologia , Elasticidade/fisiologia , Colo do Fêmur/patologia , Colo do Fêmur/fisiologia , Idoso , Idoso de 80 Anos ou mais , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Viscosidade
13.
J Orthop ; 16(5): 434-439, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31516213

RESUMO

The purpose was to evaluate the effect of Local infiltration analgesia (LIA) reagents in monotherapy and in combinations at clinical doses, on the viability and function of osteoblasts isolated from hip OA patients undergoing orthopaedic surgery. Human hip OA osteoblasts were exposed to LIA reagents including Bupivacaine, Lidocaine, Ropivacaine, Ketorolac and combinations with Adrenaline for 30 min. Osteoblast cellular viability and function was determined at 24 h and 7 days post-exposure. In conclusion, our data shows that LIA reagents, most notably Bupivacaine and its use in combination, are detrimental to human hip OA osteoblasts at concentrations advocated for clinical use.

14.
BMC Musculoskelet Disord ; 20(1): 70, 2019 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-30744620

RESUMO

BACKGROUND: Preclinical osteoarthritis models where damage occurs spontaneously may better reflect the initiation and development of human osteoarthritis. The aim was to assess the commercial pig as a model of spontaneous osteoarthritis development by examining pain-associated behaviour, joint cartilage integrity, as well as the use of porcine cartilage explants and isolated chondrocytes and osteoblasts for ex vivo and in vitro studies. METHODS: Female pigs (Large white x Landrace x Duroc) were examined at different ages from 6 weeks to 3-4 years old. Lameness was assessed as a marker of pain-associated behaviour. Femorotibial joint cartilage integrity was determined by chondropathy scoring and histological staining of proteoglycan. IL-6 production and proteoglycan degradation was assessed in cartilage explants and primary porcine chondrocytes by ELISA and DMMB assay. Primary porcine osteoblasts from damaged and non-damaged joints, as determined by chondropathy scoring, were assessed for mineralisation, proliferative and mitochondrial function as a marker of metabolic capacity. RESULTS: Pigs aged 80 weeks and older exhibited lameness. Osteoarthritic lesions in femoral condyle and tibial plateau cartilage were apparent from 40 weeks and increased in severity with age up to 3-4 years old. Cartilage from damaged joints exhibited proteoglycan loss, which positively correlated with chondropathy score. Stimulation of porcine cartilage explants and primary chondrocytes with either IL-1ß or visfatin induced IL-6 production and proteoglycan degradation. Primary porcine osteoblasts from damaged joints exhibited reduced proliferative, mineralisation, and metabolic capacity. CONCLUSION: In conclusion, the commercial pig represents an alternative model of spontaneous osteoarthritis and an excellent source of tissue for in vitro and ex vivo studies.


Assuntos
Cartilagem Articular , Condrócitos , Articulações , Osteoartrite , Osteoblastos , Animais , Comportamento Animal , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Proliferação de Células , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese , Modelos Animais de Doenças , Progressão da Doença , Feminino , Interleucina-6/metabolismo , Articulações/metabolismo , Articulações/patologia , Articulações/fisiopatologia , Osteoartrite/metabolismo , Osteoartrite/patologia , Osteoartrite/fisiopatologia , Osteoartrite/psicologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Osteogênese , Proteoglicanas/metabolismo , Proteólise , Índice de Gravidade de Doença , Sus scrofa , Fatores de Tempo
15.
Sci Rep ; 8(1): 15360, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30337633

RESUMO

Adiposity and adipokines are implicated in the loss of skeletal muscle mass with age and in several chronic disease states. The aim of this study was to determine the effects of human obese and lean subcutaneous adipose tissue secretome on myogenesis and metabolism in skeletal muscle cells derived from both young (18-30 yr) and elderly (>65 yr) individuals. Obese subcutaneous adipose tissue secretome impaired the myogenesis of old myoblasts but not young myoblasts. Resistin was prolifically secreted by obese subcutaneous adipose tissue and impaired myotube thickness and nuclear fusion by activation of the classical NFκB pathway. Depletion of resistin from obese adipose tissue secretome restored myogenesis. Inhibition of the classical NFκB pathway protected myoblasts from the detrimental effect of resistin on myogenesis. Resistin also promoted intramyocellular lipid accumulation in myotubes and altered myotube metabolism by enhancing fatty acid oxidation and increasing myotube respiration and ATP production. In conclusion, resistin derived from human obese subcutaneous adipose tissue impairs myogenesis of human skeletal muscle, particularly older muscle, and alters muscle metabolism in developing myotubes. These findings may have important implications for the maintenance of muscle mass in older people with chronic inflammatory conditions, or older people who are obese or overweight.


Assuntos
Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , NF-kappa B/metabolismo , Obesidade/fisiopatologia , Resistina/metabolismo , Gordura Subcutânea/fisiopatologia , Magreza , Adolescente , Adulto , Idoso , Diferenciação Celular , Meios de Cultivo Condicionados/farmacologia , Feminino , Humanos , Masculino , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Adulto Jovem
16.
J Biol Chem ; 293(6): 1865-1874, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29301941

RESUMO

Glucocorticoids (GCs) are steroids with profound anti-inflammatory and immunomodulatory activities. Synthetic GCs are widely used for managing chronic inflammatory and autoimmune conditions, as immunosuppressants in transplantation, and as anti-tumor agents in certain hematological cancers. However, prolonged GC exposure can cause adverse effects. A detailed understanding of GCs' mechanisms of action may enable harnessing of their desirable actions while minimizing harmful effects. Here, we review the impact on the GC biology of microRNAs, small non-coding RNAs that post-transcriptionally regulate gene expression. Emerging evidence indicates that microRNAs modulate GC production by the adrenal glands and the cells' responses to GCs. Furthermore, GCs influence cell proliferation, survival, and function at least in part by regulating microRNA expression. We propose that the beneficial effects of GCs may be enhanced through combination with reagents targeting specific microRNAs.


Assuntos
Glândulas Suprarrenais/metabolismo , MicroRNAs/metabolismo , Animais , Regulação da Expressão Gênica , Glucocorticoides/biossíntese , Humanos , Inflamação/genética , Inflamação/metabolismo , MicroRNAs/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
17.
Sci Rep ; 7(1): 12997, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-29021612

RESUMO

Studies in murine cell lines and in mouse models suggest that IL-15 promotes myogenesis and may protect against the inflammation-mediated skeletal muscle atrophy which occurs in sarcopenia and cachexia. The effects of IL-15 on human skeletal muscle growth and development remain largely uncharacterised. Myogenic cultures were isolated from the skeletal muscle of young and elderly subjects. Myoblasts were differentiated for 8 d, with or without the addition of recombinant cytokines (rIL-15, rTNFα) and an IL-15 receptor neutralising antibody. Although myotubes were 19% thinner in cultures derived from elderly subjects, rIL-15 increased the thickness of myotubes (MTT) from both age groups to a similar extent. Neutralisation of the high-affinity IL-15 receptor binding subunit, IL-15rα in elderly myotubes confirmed that autocrine concentrations of IL-15 also support myogenesis. Co-incubation of differentiating myoblasts with rIL-15 and rTNFα, limited the reduction in MTT and nuclear fusion index (NFI) associated with rTNFα stimulation alone. IL-15rα neutralisation and rTNFα decreased MTT and NFI further. This, coupled with our observation that myotubes secrete IL-15 in response to TNFα stimulation supports the notion that IL-15 serves to mitigate inflammatory skeletal muscle loss. IL-15 may be an effective therapeutic target for the attenuation of inflammation-mediated skeletal muscle atrophy.


Assuntos
Interleucina-15/sangue , Desenvolvimento Muscular/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Fator de Necrose Tumoral alfa/efeitos adversos , Idoso , Envelhecimento , Anticorpos Neutralizantes/farmacologia , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Proteínas Recombinantes/farmacologia
18.
Sci Rep ; 7(1): 4042, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642544

RESUMO

The purpose of this study was to determine the effect of adiposity on the architecture and composition of hip OA subchondral bone, and to examine the pathological role of adipokines. Femoral heads were collected from normal-weight or over-weight/obese patients with hip OA. Structural parameters of subchondral bone were determined by MicroCT and type I collagen α1/α2 ratio was determined by SDS PAGE and by qRT-PCR in ex-vivo bone explants. The serum concentration of adipokines was determined by Luminex. The effect of resistin on primary OA osteoblasts was determined by analysis of Wnt pathway signal transduction, bone nodule formation, and osteoblast metabolic activity. Subchondral bone from over-weight/obese hip OA patients exhibited reduced trabecular thickness, increased bone surface/bone volume ratio, and an increase in the Type I collagen α1/α2, compared to normal-weight hip OA patients. The serum concentration of resistin was higher in overweight/obese OA patients, compared to normal-weight OA patients. Stimulation of normal-weight bone explant with recombinant resistin increased the Type I collagen α1/α2 ratio. Stimulation of primary OA osteoblasts with recombinant resistin increased Wnt signalling activation, osteoblast metabolic activity, and bone nodule formation. Increased adiposity in hip OA patients is associated with altered subchondral bone architecture and type I collagen composition.


Assuntos
Colágeno Tipo I/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Osteoartrite do Quadril/complicações , Osteoartrite do Quadril/metabolismo , Resistina/metabolismo , Adiposidade , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Humanos , Masculino , Obesidade/patologia , Osteoartrite do Quadril/diagnóstico , Osteoblastos/metabolismo , Índice de Gravidade de Doença , Tomografia Computadorizada por Raios X , Via de Sinalização Wnt
19.
Sci Rep ; 7(1): 3451, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28615667

RESUMO

Increasing evidence suggests that inflammation plays a central role in driving joint pathology in certain patients with osteoarthritis (OA). Since many patients with OA are obese and increased adiposity is associated with chronic inflammation, we investigated whether obese patients with hip OA exhibited differential pro-inflammatory cytokine signalling and peripheral and local lymphocyte populations, compared to normal weight hip OA patients. No differences in either peripheral blood or local lymphocyte populations were found between obese and normal-weight hip OA patients. However, synovial fibroblasts from obese OA patients were found to secrete greater amounts of the pro-inflammatory cytokine IL-6, compared to those from normal-weight patients (p < 0.05), which reflected the greater levels of IL-6 detected in the synovial fluid of the obese OA patients. Investigation into the inflammatory mechanism demonstrated that IL-6 secretion from synovial fibroblasts was induced by chondrocyte-derived IL-6. Furthermore, this IL-6 inflammatory response, mediated by chondrocyte-synovial fibroblast cross-talk, was enhanced by the obesity-related adipokine leptin. This study suggests that obesity enhances the cross-talk between chondrocytes and synovial fibroblasts via raised levels of the pro-inflammatory adipokine leptin, leading to greater production of IL-6 in OA patients.


Assuntos
Comunicação Celular , Condrócitos/metabolismo , Fibroblastos/metabolismo , Interleucina-6/biossíntese , Obesidade/complicações , Osteoartrite/complicações , Osteoartrite/metabolismo , Idoso , Índice de Massa Corporal , Feminino , Humanos , Interleucina-8/metabolismo , Leptina/metabolismo , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Osteoartrite/patologia , Líquido Sinovial/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
20.
HSS J ; 13(1): 20-27, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28167869

RESUMO

BACKGROUND: Precision medicine has been adopted in a range of clinical settings where omics data have led to greater characterisation of disease and stratification of patients into subcategories of phenotypes and pathologies. However, in orthopaedics, precision medicine lags behind other disciplines such as cancer. Joint registries have now amassed a huge body of data pertaining to implant performance which can be broken down into performance statistics for different material types in different cohorts of patients. The National Joint Registry of England, Wales and Northern Ireland (NJR) is now one of the largest datasets available. Other registries such as those from Sweden and Australia however contain longer follow-up. Together, these registries can provide a wealth of informative for the orthopaedics community when considering which implant to give to any particular patient. QUESTIONS/PURPOSES: We aim to explore the benefits of combining multiple large data streams including joint registries, published data on osteoarthritis (OA) pathogenesis and pathology and data concerning performance of each implant material combination in terms of biocompatibility. We believe that this analysis will provide a comprehensive overview of implant performance hopefully aiding surgeons in making more informed choices about which implant should be used in which patient. METHODS: Data from three joint registries were combined with established literature to highlight the heterogeneity of OA disease and the different clinical outcomes following arthroplasty with a range of material types. RESULTS: This review confirms that joint registries are unable to consider differences in arthritis presentation or underlying drivers of pathology. OA is now recognised to present with varying pathology with differing morbidity in different patient populations. Equally, just as OA is a heterogeneous disease, there are disparate responses to wear debris from different material combinations used in joint replacement surgery. This has been highlighted by recent high-profile scrutiny of early failure of metal-on-metal total hip replacement (THR) implants. CONCLUSIONS: Bringing together data from joint registries, biomarker analysis, phenotyping of OA patients and knowledge of how different patients respond to implant debris will lead to a truly personalised approach to treating OA patients, ensuring that the correct implant is given to the correct patient at the correct time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA