Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37426695

RESUMO

Introduction: Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods: Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results: Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion: Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.

2.
J Sport Health Sci ; 11(4): 479-494, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688382

RESUMO

Although the structural and functional effects of exercise on the heart are well established, the metabolic changes that occur in the heart during and after exercise remain unclear. In this study, we used metabolomics to assess time-dependent changes in the murine cardiac metabolome following 1 session of treadmill exercise. After the exercise bout, we also recorded blood lactate, glucose, and ketone body levels and measured cardiac mitochondrial respiration. In both male and female mice, moderate- and high-intensity exercise acutely increased blood lactate levels. In both sexes, low- and moderate-intensity exercise augmented circulating 3-hydroxybutryrate levels immediately after the exercise bout; however, only in female mice did high-intensity exercise increase 3-hydroxybutyrate levels, with significant increases occurring 1 h after the exercise session. Untargeted metabolomics analyses of sedentary female and male hearts suggest considerable sex-dependent differences in basal cardiac metabolite levels, with female hearts characterized by higher levels of pantothenate, pyridoxamine, homoarginine, tryptophan, and several glycerophospholipid and sphingomyelin species and lower levels of numerous metabolites, including acetyl coenzyme A, glucuronate, gulonate, hydroxyproline, prolyl-hydroxyproline, carnosine, anserine, and carnitinylated and glycinated species, as compared with male hearts. Immediately after a bout of treadmill exercise, both male and female hearts had higher levels of corticosterone; however, female mice showed more extensive exercise-induced changes in the cardiac metabolome, characterized by significant, time-dependent changes in amino acids (e.g., serine, alanine, tyrosine, tryptophan, branched-chain amino acids) and the ketone body 3-hydroxybutyrate. Results from experiments using isolated cardiac mitochondria suggest that high-intensity treadmill exercise does not acutely affect respiration or mitochondrial coupling; however, female cardiac mitochondria demonstrate generally higher adenosine diphosphate sensitivity compared with male cardiac mitochondria. Collectively, these findings in mice reveal key sex-dependent differences in cardiac metabolism and suggest that the metabolic network in the female heart is more responsive to physiological stress caused by exercise.


Assuntos
Condicionamento Físico Animal , Triptofano , Ácido 3-Hidroxibutírico/metabolismo , Animais , Feminino , Lactatos/metabolismo , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Condicionamento Físico Animal/fisiologia , Triptofano/metabolismo
3.
Toxicol Sci ; 185(1): 64-76, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34718823

RESUMO

Benzene is a ubiquitous environmental pollutant abundant in household products, petrochemicals, and cigarette smoke. Benzene is a well-known carcinogen in humans and experimental animals; however, little is known about the cardiovascular toxicity of benzene. Recent population-based studies indicate that benzene exposure is associated with an increased risk for heart failure. Nonetheless, it is unclear whether benzene exposure is sufficient to induce and/or exacerbate heart failure. We examined the effects of benzene (50 ppm, 6 h/day, 5 days/week, and 6 weeks) or high-efficiency particulate absorbing-filtered air exposure on transverse aortic constriction (TAC)-induced pressure overload in male C57BL/6J mice. Our data show that benzene exposure had no effect on cardiac function in the Sham group; however, it significantly compromised cardiac function as depicted by a significant decrease in fractional shortening and ejection fraction, as compared with TAC/Air-exposed mice. RNA-seq analysis of the cardiac tissue from the TAC/benzene-exposed mice showed a significant increase in several genes associated with adhesion molecules, cell-cell adhesion, inflammation, and stress response. In particular, neutrophils were implicated in our unbiased analyses. Indeed, immunofluorescence studies showed that TAC/benzene exposure promotes infiltration of CD11b+/S100A8+/myeloperoxidase+-positive neutrophils in the hearts by 3-fold. In vitro, the benzene metabolites, hydroquinone, and catechol, induced the expression of P-selectin in cardiac microvascular endothelial cells by 5-fold and increased the adhesion of neutrophils to these endothelial cells by 1.5- to 2.0-fold. Benzene metabolite-induced adhesion of neutrophils to the endothelial cells was attenuated by anti-P-selectin antibody. Together, these data suggest that benzene exacerbates heart failure by promoting endothelial activation and neutrophil recruitment.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Animais , Benzeno/toxicidade , Células Endoteliais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Remodelação Ventricular/fisiologia
4.
Am J Physiol Heart Circ Physiol ; 319(1): H109-H122, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442025

RESUMO

Although cell therapy-mediated cardiac repair offers promise for treatment/management of heart failure, lack of fundamental understanding of how cell therapy works limits its translational potential. In particular, whether reparative cells from failing hearts differ from cells derived from nonfailing hearts remains unexplored. Here, we assessed differences between cardiac mesenchymal cells (CMC) derived from failing (HF) versus nonfailing (Sham) hearts and whether the source of donor cells (i.e., from HF vs. Sham) limits reparative capacity, particularly when administered late after infarction. To determine the impact of the donor source of CMCs, we characterized the transcriptional profile of CMCs isolated from sham (Sham-CMC) and failing (HF-CMC) hearts. RNA-seq analysis revealed unique transcriptional signatures in Sham-CMC and HF-CMC, suggesting that the donor source impacts CMC. To determine whether the donor source affects reparative potential, C57BL6/J female mice were subjected to 60 min of regional myocardial ischemia and then reperfused for 35 days. In a randomized, controlled, and blinded fashion, vehicle, HF-CMC, or Sham-CMC were injected into the lumen of the left ventricle at 35 days post-MI. An additional 5 weeks later, cardiac function was assessed by echocardiography, which indicated that delayed administration of Sham-CMC and HF-CMC attenuated ventricular dilation. We also determined whether Sham-CMC and HF-CMC treatments affected ventricular histopathology. Our data indicate that the donor source (nonfailing vs. failing hearts) affects certain aspects of CMC, and these insights may have implications for future studies. Our data indicate that delayed administration of CMC limits ventricular dilation and that the source of CMC may influence their reparative actions.NEW & NOTEWORTHY Most preclinical studies have used only cells from healthy, nonfailing hearts. Whether donor condition (i.e., heart failure) impacts cells used for cell therapy is not known. We directly tested whether donor condition impacted the reparative effects of cardiac mesenchymal cells in a chronic model of myocardial infarction. Although cells from failing hearts differed in multiple aspects, they retained the potential to limit ventricular remodeling.


Assuntos
Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/patologia , Traumatismo por Reperfusão Miocárdica/terapia , Função Ventricular , Animais , Células Cultivadas , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transcriptoma
5.
Basic Res Cardiol ; 114(4): 28, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31152247

RESUMO

Several post-translational modifications figure prominently in ventricular remodeling. The beta-O-linkage of N-acetylglucosamine (O-GlcNAc) to proteins has emerged as an important signal in the cardiovascular system. Although there are limited insights about the regulation of the biosynthetic pathway that gives rise to the O-GlcNAc post-translational modification, much remains to be elucidated regarding the enzymes, such as O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), which regulate the presence/absence of O-GlcNAcylation. Recently, we showed that the transcription factor, E2F1, could negatively regulate OGT and OGA expression in vitro. The present study sought to determine whether E2f1 deletion would improve post-infarct ventricular function by de-repressing expression of OGT and OGA. Male and female mice were subjected to non-reperfused myocardial infarction (MI) and followed for 1 or 4 week. MI significantly increased E2F1 expression. Deletion of E2f1 alone was not sufficient to alter OGT or OGA expression in a naïve setting. Cardiac dysfunction was significantly attenuated at 1-week post-MI in E2f1-ablated mice. During chronic heart failure, E2f1 deletion also attenuated cardiac dysfunction. Despite the improvement in function, OGT and OGA expression was not normalized and protein O-GlcNAcyltion was not changed at 1-week post-MI. OGA expression was significantly upregulated at 4-week post-MI but overall protein O-GlcNAcylation was not changed. As an alternative explanation, we also performed guided transcriptional profiling of predicted targets of E2F1, which indicated potential differences in cardiac metabolism, angiogenesis, and apoptosis. E2f1 ablation increased heart size and preserved remote zone capillary density at 1-week post-MI. During chronic heart failure, cardiomyocytes in the remote zone of E2f1-deleted hearts were larger than wildtype. These data indicate that, overall, E2f1 exerts a deleterious effect on ventricular remodeling. Thus, E2f1 deletion improves ventricular remodeling with limited impact on enzymes regulating O-GlcNAcylation.


Assuntos
Fator de Transcrição E2F1/deficiência , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Animais , Capilares/metabolismo , Capilares/patologia , Vasos Coronários/metabolismo , Vasos Coronários/patologia , Modelos Animais de Doenças , Fator de Transcrição E2F1/genética , Feminino , Deleção de Genes , Glicosilação , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , N-Acetilglucosaminiltransferases/metabolismo , beta-N-Acetil-Hexosaminidases/metabolismo
6.
J Mol Cell Cardiol ; 118: 183-192, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29627295

RESUMO

Pathological cardiac hypertrophy is associated with the accumulation of lipid peroxidation-derived aldehydes such as 4-hydroxy-trans-2-nonenal (HNE) and acrolein in the heart. These aldehydes are metabolized via several pathways, of which aldose reductase (AR) represents a broad-specificity route for their elimination. We tested the hypothesis that by preventing aldehyde removal, AR deficiency accentuates the pathological effects of transverse aortic constriction (TAC). We found that the levels of AR in the heart were increased in mice subjected to TAC for 2 weeks. In comparison with wild-type (WT), AR-null mice showed lower ejection fraction, which was exacerbated 2 weeks after TAC. Levels of atrial natriuretic peptide and myosin heavy chain were higher in AR-null than in WT TAC hearts. Deficiency of AR decreased urinary levels of the acrolein metabolite, 3-hydroxypropylmercapturic acid. Deletion of AR did not affect the levels of the other aldehyde-metabolizing enzyme - aldehyde dehydrogenase 2 in the heart, or its urinary product - (N-Acetyl-S-(2-carboxyethyl)-l-cystiene). AR-null hearts subjected to TAC showed increased accumulation of HNE- and acrolein-modified proteins, as well as increased AMPK phosphorylation and autophagy. Superfusion with HNE led to a greater increase in p62, LC3II formation, and GFP-LC3-II punctae formation in AR-null than WT cardiac myocytes. Pharmacological inactivation of JNK decreased HNE-induced autophagy in AR-null cardiac myocytes. Collectively, these results suggest that during hypertrophy the accumulation of lipid peroxidation derived aldehydes promotes pathological remodeling via excessive autophagy, and that metabolic detoxification of these aldehydes by AR may be essential for maintaining cardiac function during early stages of pressure overload.


Assuntos
Aldeído Redutase/deficiência , Autofagia , Coração/fisiopatologia , Pressão , Aldeído Redutase/metabolismo , Aldeídos/metabolismo , Animais , Aorta/patologia , Cardiomegalia/diagnóstico por imagem , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Constrição Patológica , Deleção de Genes , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Contração Miocárdica , Miocárdio/enzimologia , Proteína Sequestossoma-1/metabolismo
8.
Basic Res Cardiol ; 112(2): 19, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28238121

RESUMO

In the failing heart, iNOS is expressed by both macrophages and cardiomyocytes. We hypothesized that inflammatory cell-localized iNOS exacerbates left ventricular (LV) remodeling. Wild-type (WT) C57BL/6 mice underwent total body irradiation and reconstitution with bone marrow from iNOS-/- mice (iNOS-/-c) or WT mice (WTc). Chimeric mice underwent coronary ligation to induce large infarction and ischemic heart failure (HF), or sham surgery. After 28 days, as compared with WTc sham mice, WTc HF mice exhibited significant (p < 0.05) mortality, LV dysfunction, hypertrophy, fibrosis, oxidative/nitrative stress, inflammatory activation, and iNOS upregulation. These mice also exhibited a ~twofold increase in circulating Ly6Chi pro-inflammatory monocytes, and ~sevenfold higher cardiac M1 macrophages, which were primarily CCR2- cells. In contrast, as compared with WTc HF mice, iNOS-/-c HF mice exhibited significantly improved survival, LV function, hypertrophy, fibrosis, oxidative/nitrative stress, and inflammatory activation, without differences in overall cardiac iNOS expression. Moreover, iNOS-/-c HF mice exhibited lower circulating Ly6Chi monocytes, and augmented cardiac M2 macrophages, but with greater infiltrating monocyte-derived CCR2+ macrophages vs. WTc HF mice. Lastly, upon cell-to-cell contact with naïve cardiomyocytes, peritoneal macrophages from WT HF mice depressed contraction, and augmented cardiomyocyte oxygen free radicals and peroxynitrite. These effects were not observed upon contact with macrophages from iNOS-/- HF mice. We conclude that leukocyte iNOS is obligatory for local and systemic inflammatory activation and cardiac remodeling in ischemic HF. Activated macrophages in HF may directly induce cardiomyocyte contractile dysfunction and oxidant stress upon cell-to-cell contact; this juxtacrine response requires macrophage-localized iNOS.


Assuntos
Insuficiência Cardíaca/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Remodelação Ventricular/fisiologia , Animais , Western Blotting , Ecocardiografia , Ensaio de Desvio de Mobilidade Eletroforética , Citometria de Fluxo , Imuno-Histoquímica , Isquemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
9.
Am J Physiol Heart Circ Physiol ; 311(5): H1189-H1201, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27591224

RESUMO

Despite expansion of resident cardiac stem cells (CSCs; c-kit+Lin-) after myocardial infarction, endogenous repair processes are insufficient to prevent adverse cardiac remodeling and heart failure (HF). This suggests that the microenvironment in post-ischemic and failing hearts compromises CSC regenerative potential. Inflammatory cytokines, such as tumor necrosis factor-α (TNF), are increased after infarction and in HF; whether they modulate CSC function is unknown. As the effects of TNF are specific to its two receptors (TNFRs), we tested the hypothesis that TNF differentially modulates CSC function in a TNFR-specific manner. CSCs were isolated from wild-type (WT), TNFR1-/-, and TNFR2-/- adult mouse hearts, expanded and evaluated for cell competence and differentiation in vitro in the absence and presence of TNF. Our results indicate that TNF signaling in murine CSCs is constitutively related primarily to TNFR1, with TNFR2 inducible after stress. TNFR1 signaling modestly diminished CSC proliferation, but, along with TNFR2, augmented CSC resistance to oxidant stress. Deficiency of either TNFR1 or TNFR2 did not impact CSC telomerase activity. Importantly, TNF, primarily via TNFR1, inhibited cardiomyogenic commitment during CSC differentiation, and instead promoted smooth muscle and endothelial fates. Moreover, TNF, via both TNFR1 and TNFR2, channeled an alternate CSC neuroadrenergic-like fate (capable of catecholamine synthesis) during differentiation. Our results suggest that elevated TNF in the heart restrains cardiomyocyte differentiation of resident CSCs and may enhance adrenergic activation, both effects that would reduce the effectiveness of endogenous cardiac repair and the response to exogenous stem cell therapy, while promoting adverse cardiac remodeling.


Assuntos
Diferenciação Celular/genética , Miocárdio/citologia , Miócitos Cardíacos/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Células-Tronco/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Ensaio de Desvio de Mobilidade Eletroforética , Epinefrina/metabolismo , Citometria de Fluxo , Immunoblotting , Camundongos , Camundongos Knockout , Microscopia Confocal , Miócitos Cardíacos/citologia , Norepinefrina/metabolismo , Estresse Oxidativo , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Regeneração , Transdução de Sinais , Células-Tronco/citologia , Telomerase/metabolismo
10.
PLoS One ; 10(11): e0142939, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26565625

RESUMO

In both preclinical and clinical studies, cell transplantation of several cell types is used to promote repair of damaged organs and tissues. Nevertheless, despite the widespread use of such strategies, there remains little understanding of how the efficacy of cell therapy is regulated. We showed previously that augmentation of a unique, metabolically derived stress signal (i.e., O-GlcNAc) improves survival of cardiac mesenchymal stromal cells; however, it is not known whether enhancing O-GlcNAcylation affects lineage commitment or other aspects of cell competency. In this study, we assessed the role of O-GlcNAc in differentiation of cardiac mesenchymal stromal cells. Exposure of these cells to routine differentiation protocols in culture increased markers of the cardiomyogenic lineage such as Nkx2.5 and connexin 40, and augmented the abundance of transcripts associated with endothelial and fibroblast cell fates. Differentiation significantly decreased the abundance of O-GlcNAcylated proteins. To determine if O-GlcNAc is involved in stromal cell differentiation, O-GlcNAcylation was increased pharmacologically during the differentiation protocol. Although elevated O-GlcNAc levels did not significantly affect fibroblast and endothelial marker expression, acquisition of cardiomyocyte markers was limited. In addition, increasing O-GlcNAcylation further elevated smooth muscle actin expression. In addition to lineage commitment, we also evaluated proliferation and migration, and found that increasing O-GlcNAcylation did not significantly affect either; however, we found that O-GlcNAc transferase--the protein responsible for adding O-GlcNAc to proteins--is at least partially required for maintaining cellular proliferative and migratory capacities. We conclude that O-GlcNAcylation contributes significantly to cardiac mesenchymal stromal cell lineage and function. O-GlcNAcylation and pathological conditions that may affect O-GlcNAc levels (such as diabetes) should be considered carefully in the context of cardiac cell therapy.


Assuntos
Regulação Enzimológica da Expressão Gênica , Células-Tronco Mesenquimais/citologia , Miócitos Cardíacos/citologia , N-Acetilglucosaminiltransferases/metabolismo , Acetilglucosamina/metabolismo , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Proliferação de Células , Conexinas/metabolismo , Fibroblastos/citologia , Glicosilação , Proteínas de Fluorescência Verde/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/metabolismo , Macrolídeos/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteína alfa-5 de Junções Comunicantes
11.
J Biol Chem ; 290(52): 31013-24, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26527687

RESUMO

Protein O-GlcNAcylation, which is controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), has emerged as an important posttranslational modification that may factor in multiple diseases. Until recently, it was assumed that OGT/OGA protein expression was relatively constant. Several groups, including ours, have shown that OGT and/or OGA expression changes in several pathologic contexts, yet the cis and trans elements that regulate the expression of these enzymes remain essentially unexplored. Here, we used a reporter-based assay to analyze minimal promoters and leveraged in silico modeling to nominate several candidate transcription factor binding sites in both Ogt (i.e. the gene for OGT protein) and Mgea5 (i.e. the gene for OGA protein). We noted multiple E2F binding site consensus sequences in both promoters. We performed chromatin immunoprecipitation in both human and mouse cells and found that E2F1 bound to candidate E2F binding sites in both promoters. In HEK293 cells, we overexpressed E2F1, which significantly reduced OGT and MGEA5 expression. Conversely, E2F1-deficient mouse fibroblasts had increased Ogt and Mgea5 expression. Of the known binding partners for E2F1, we queried whether retinoblastoma 1 (Rb1) might be involved. Rb1-deficient mouse embryonic fibroblasts showed increased levels of Ogt and Mgea5 expression, yet overexpression of E2F1 in the Rb1-deficient cells did not alter Ogt and Mgea5 expression, suggesting that Rb1 is required for E2F1-mediated suppression. In conclusion, this work identifies and validates some of the promoter elements for mouse Ogt and Mgea5 genes. Specifically, E2F1 negatively regulates both Ogt and Mgea5 expression in an Rb1 protein-dependent manner.


Assuntos
Antígenos de Neoplasias/biossíntese , Fator de Transcrição E2F1/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Histona Acetiltransferases/biossíntese , Hialuronoglucosaminidase/biossíntese , N-Acetilglucosaminiltransferases/biossíntese , Elementos de Resposta/fisiologia , Células 3T3-L1 , Animais , Antígenos de Neoplasias/genética , Fator de Transcrição E2F1/genética , Células HEK293 , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/genética , Camundongos , Camundongos Mutantes , N-Acetilglucosaminiltransferases/genética , Proteína do Retinoblastoma/genética , Proteína do Retinoblastoma/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 306(1): H142-53, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24186210

RESUMO

The singly coded gene O-linked-ß-N-acetylglucosamine (O-GlcNAc) transferase (Ogt) resides on the X chromosome and is necessary for embryonic stem cell viability during embryogenesis. In mature cells, this enzyme catalyzes the posttranslational modification known as O-GlcNAc to various cellular proteins. Several groups, including our own, have shown that acute increases in protein O-GlcNAcylation are cardioprotective both in vitro and in vivo. Yet, little is known about how OGT affects cardiac function because total body knockout (KO) animals are not viable. Presently, we sought to establish the potential involvement of cardiomyocyte Ogt in cardiac maturation. Initially, we characterized a constitutive cardiomyocyte-specific (cm)OGT KO (c-cmOGT KO) mouse and found that only 12% of the c-cmOGT KO mice survived to weaning age (4 wk old); the surviving animals were smaller than their wild-type littermates, had dilated hearts, and showed overt signs of heart failure. Dysfunctional c-cmOGT KO hearts were more fibrotic, apoptotic, and hypertrophic. Several glycolytic genes were also upregulated; however, there were no gross changes in mitochondrial O2 consumption. Histopathology of the KO hearts indicated the potential involvement of endoplasmic reticulum stress, directing us to evaluate expression of 78-kDa glucose-regulated protein and protein disulfide isomerase, which were elevated. Additional groups of mice were subjected to inducible deletion of cmOGT, which did not produce overt dysfunction within the first couple of weeks of deletion. Yet, long-term loss (via inducible deletion) of cmOGT produced gradual and progressive cardiomyopathy. Thus, cardiomyocyte Ogt is necessary for maturation of the mammalian heart, and inducible deletion of cmOGT in the adult mouse produces progressive ventricular dysfunction.


Assuntos
Miócitos Cardíacos/metabolismo , N-Acetilglucosaminiltransferases/genética , Animais , Apoptose , Cardiomiopatia Dilatada/congênito , Cardiomiopatia Dilatada/patologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Fibrose/congênito , Fibrose/patologia , Deleção de Genes , Glicólise , Insuficiência Cardíaca/congênito , Insuficiência Cardíaca/patologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Camundongos Knockout , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/metabolismo , Isomerases de Dissulfetos de Proteínas/genética , Isomerases de Dissulfetos de Proteínas/metabolismo
14.
Cell Metab ; 17(2): 303-10, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23395176

RESUMO

Circadian clocks are coupled to metabolic oscillations through nutrient-sensing pathways. Nutrient flux into the hexosamine biosynthesis pathway triggers covalent protein modification by O-linked ß-D-N-acetylglucosamine (O-GlcNAc). Here we show that the hexosamine/O-GlcNAc pathway modulates peripheral clock oscillation. O-GlcNAc transferase (OGT) promotes expression of BMAL1/CLOCK target genes and affects circadian oscillation of clock genes in vitro and in vivo. Both BMAL1 and CLOCK are rhythmically O-GlcNAcylated, and this protein modification stabilizes BMAL1 and CLOCK by inhibiting their ubiquitination. In vivo analysis of genetically modified mice with perturbed hepatic OGT expression shows aberrant circadian rhythms of glucose homeostasis. These results establish the counteraction between O-GlcNAcylation and ubiquitination as a key mechanism that regulates the circadian clock and suggest a crucial role for O-GlcNAc signaling in transducing nutritional signals to the core circadian timing machinery.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Acetilglucosamina/metabolismo , Proteínas CLOCK/metabolismo , Relógios Circadianos , Transdução de Sinais , Ubiquitinação , Fatores de Transcrição ARNTL/genética , Animais , Proteínas CLOCK/genética , Linhagem Celular Tumoral , Relógios Circadianos/genética , Regulação da Expressão Gênica , Glucose/metabolismo , Homeostase , Humanos , Fígado/enzimologia , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Estabilidade Proteica , Transdução de Sinais/genética , Ubiquitinação/genética
15.
PLoS One ; 8(1): e53951, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308291

RESUMO

This study was designed to test whether reduced levels of cardiac fructose-2,6-bisphosphate (F-2,6-P(2)) exacerbates cardiac damage in response to pressure overload. F-2,6-P(2) is a positive regulator of the glycolytic enzyme phosphofructokinase. Normal and Mb transgenic mice were subject to transverse aortic constriction (TAC) or sham surgery. Mb transgenic mice have reduced F-2,6-P(2) levels, due to cardiac expression of a transgene for a mutant, kinase deficient form of the enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2) which controls the level of F-2,6-P(2). Thirteen weeks following TAC surgery, glycolysis was elevated in FVB, but not in Mb, hearts. Mb hearts were markedly more sensitive to TAC induced damage. Echocardiography revealed lower fractional shortening in Mb-TAC mice as well as larger left ventricular end diastolic and end systolic diameters. Cardiac hypertrophy and pulmonary congestion were more severe in Mb-TAC mice as indicated by the ratios of heart and lung weight to tibia length. Expression of α-MHC RNA was reduced more in Mb-TAC hearts than in FVB-TAC hearts. TAC produced a much greater increase in fibrosis of Mb hearts and this was accompanied by 5-fold more collagen 1 RNA expression in Mb-TAC versus FVB-TAC hearts. Mb-TAC hearts had the lowest phosphocreatine to ATP ratio and the most oxidative stress as indicated by higher cardiac content of 4-hydroxynonenal protein adducts. These results indicate that the heart's capacity to increase F-2,6-P(2) during pressure overload elevates glycolysis which is beneficial for reducing pressure overload induced cardiac hypertrophy, dysfunction and fibrosis.


Assuntos
Aorta/patologia , Cardiomegalia/metabolismo , Frutosedifosfatos/metabolismo , Glicólise , Miocárdio/metabolismo , Fosfofrutoquinase-2/deficiência , Trifosfato de Adenosina/metabolismo , Animais , Aorta/cirurgia , Cardiomegalia/fisiopatologia , Constrição Patológica , Fibrose/metabolismo , Fibrose/fisiopatologia , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Estresse Oxidativo , Fosfocreatina/metabolismo , Fosfofrutoquinase-2/genética , Remodelação Ventricular
16.
Stem Cells ; 31(4): 765-75, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23335157

RESUMO

Clinical trials demonstrate the regenerative potential of cardiac stem cell (CSC) therapy in the postinfarcted heart. Despite these encouraging preliminary clinical findings, the basic biology of these cells remains largely unexplored. The principal requirement for cell transplantation is to effectively prime them for survival within the unfavorable environment of the infarcted myocardium. In the adult mammalian heart, the ß-O-linkage of N-acetylglucosamine (i.e., O-GlcNAc) to proteins is a unique post-translational modification that confers cardioprotection from various otherwise lethal stressors. It is not known whether this signaling system exists in CSCs. In this study, we demonstrate that protein O-GlcNAcylation is an inducible stress response in adult murine Sca-1(+) /lin(-) CSCs and exerts an essential prosurvival role. Posthypoxic CSCs responded by time-dependently increasing protein O-GlcNAcylation upon reoxygenation. We used pharmacological interventions for loss- and gain-of-function, that is, enzymatic inhibition of O-GlcNAc transferase (OGT) (adds the O-GlcNAc modification to proteins) by TT04, or inhibition of OGA (removes O-GlcNAc) by thiamet-G (ThG). Reduction in the O-GlcNAc signal (via TT04, or OGT gene deletion using Cre-mediated recombination) significantly sensitized CSCs to posthypoxic injury, whereas augmenting O-GlcNAc levels (via ThG) enhanced cell survival. Diminished O-GlcNAc levels render CSCs more susceptible to the onset of posthypoxic apoptotic processes via elevated poly(ADP-ribose) polymerase cleavage due to enhanced caspase-3/7 activation, whereas promoting O-GlcNAcylation can serve as a pre-emptive antiapoptotic signal regulating the survival of CSCs. Thus, we report the primary demonstration of protein O-GlcNAcylation as an important prosurvival signal in CSCs, which could enhance CSC survival prior to in vivo autologous transfer.


Assuntos
Miócitos Cardíacos/metabolismo , Transdução de Sinais/fisiologia , Células-Tronco/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Masculino , Camundongos , Microscopia Confocal , Miócitos Cardíacos/citologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Transdução de Sinais/genética , Células-Tronco/citologia
17.
PLoS One ; 7(7): e41178, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22844439

RESUMO

BACKGROUND: Pharmacologic studies with cyclooxygenase-2 (COX-2) inhibitors suggest that the late phase of ischemic preconditioning (PC) is mediated by COX-2. However, nonspecific effects of COX-2 inhibitors cannot be ruled out, and the selectivity of these inhibitors for COX-2 vs. COX-1 is only relative. Furthermore, the specific prostaglandin (PG) receptors responsible for the salubrious actions of COX-2-derived prostanoids remain unclear. OBJECTIVE: To determine the role of COX-2 and prostacyclin receptor (IP) in late PC by gene deletion. METHODS: COX-2 knockout (KO) mice (COX-2(-/-)), prostacyclin receptor KO (IP(-/-)) mice, and respective wildtype (WT, COX-2(+/+) and IP(+/+)) mice underwent sham surgery or PC with six 4-min coronary occlusion (O)/4-min R cycles 24 h before a 30-min O/24 h R. RESULTS: There were no significant differences in infarct size (IS) between non-preconditioned (non-PC) COX-2(+/+), COX-2(-/-), IP(+/+), and IP(-/-) mice, indicating that neither COX-2 nor IP modulates IS in the absence of PC. When COX-2(-/-) or IP(-/-) mice were preconditioned, IS was not reduced, indicating that the protection of late PC was completely abrogated by deletion of either the COX-2 or the IP gene. Administration of the IP selective antagonist, RO3244794 to C57BL6/J (B6) mice 30 min prior to the 30-min O had no effect on IS. When B6 mice were preconditioned 24 h prior to the 30-min O, IS was markedly reduced; however, the protection of late PC was completely abrogated by pretreatment of RO3244794. CONCLUSIONS: This is the first study to demonstrate that targeted disruption of the COX-2 gene completely abrogates the infarct-sparing effect of late PC, and that the IP, downstream of the COX-2/prostanoid pathway, is a key mediator of the late PC. These results provide unequivocal molecular genetic evidence for an essential role of the COX-2/PGI2 receptor axis in the cardioprotection afforded by the late PC.


Assuntos
Ciclo-Oxigenase 2/metabolismo , Precondicionamento Isquêmico Miocárdico , Miocárdio/metabolismo , Receptores de Epoprostenol/metabolismo , Animais , Benzofuranos/farmacologia , Ciclo-Oxigenase 2/deficiência , Ciclo-Oxigenase 2/genética , Técnicas de Inativação de Genes , Frequência Cardíaca/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/prevenção & controle , Miocárdio/enzimologia , Projetos Piloto , Propionatos/farmacologia , Receptores de Epoprostenol/antagonistas & inibidores , Receptores de Epoprostenol/deficiência , Receptores de Epoprostenol/genética , Temperatura , Fatores de Tempo
18.
Am J Physiol Heart Circ Physiol ; 301(5): H2073-80, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21873502

RESUMO

Cardiac failure is associated with increased levels of oxidized DNA, especially mitochondrial (mtDNA). It is not known if oxidized mtDNA contributes to cardiac dysfunction. To test if protection of mtDNA can reduce cardiac injury, we produced transgenic mice with cardiomyocyte-specific overexpression of the DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1) isoform 2a. In one line of mice, the transgene increased OGG1 activity by 115% in mitochondria and by 28% in nuclei. OGG1 transgenic mice demonstrated significantly lower cardiac mitochondrial levels of the DNA guanine oxidation product 7,8-dihydro-8-oxoguanine (8-oxo-dG) under basal conditions, after doxorubicin administration, or after transaortic constriction (TAC), but the transgene produced no detectable reduction in nuclear 8-oxo-dG content. OGG1 mice were tested for protection from the cardiac effects of TAC 13 wk after surgery. Compared with FVB-TAC mice, hearts from OGG1-TAC mice had lower levels of ß-myosin heavy chain mRNA but they did not display significant differences in the ratio of heart weight to tibia length or protection of cardiac function measured by echocardiography. The principle benefit of OGG1 overexpression was a significant decrease in TAC-induced cardiac fibrosis. This protection was indicated by reduced Sirius red staining on OGG1 cardiac sections and by significantly decreased induction of collagen 1 and 3 mRNA expression in OGG1 hearts after TAC surgery. These results provide a new model to assess the damaging cardiac effects of 8-oxo-dG formation and suggest that increased repair of 8-oxo-dG in mtDNA decreases cardiac pathology.


Assuntos
DNA Glicosilases/metabolismo , DNA Mitocondrial/metabolismo , Cardiopatias/enzimologia , Mitocôndrias Cardíacas/enzimologia , Miocárdio/enzimologia , Animais , Antibióticos Antineoplásicos/farmacologia , Aorta/cirurgia , Colágeno Tipo I/genética , Colágeno Tipo III/genética , Constrição , Dano ao DNA , DNA Glicosilases/genética , Modelos Animais de Doenças , Doxorrubicina/farmacologia , Fibrose , Regulação da Expressão Gênica , Genótipo , Guanina/análogos & derivados , Guanina/metabolismo , Cardiopatias/diagnóstico por imagem , Cardiopatias/genética , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Cardíacas/efeitos dos fármacos , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Estresse Oxidativo , Fenótipo , RNA Mensageiro/metabolismo , Ultrassonografia , Regulação para Cima
19.
Amino Acids ; 40(3): 895-911, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20798965

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAc) is an inducible, dynamically cycling and reversible post-translational modification of Ser/Thr residues of nucleocytoplasmic and mitochondrial proteins. We recently discovered that O-GlcNAcylation confers cytoprotection in the heart via attenuating the formation of mitochondrial permeability transition pore (mPTP) and the subsequent loss of mitochondrial membrane potential. Because Ca(2+) overload and reactive oxygen species (ROS) generation are prominent features of post-ischemic injury and favor mPTP formation, we ascertained whether O-GlcNAcylation mitigates mPTP formation via its effects on Ca(2+) overload and ROS generation. Subjecting neonatal rat cardiac myocytes (NRCMs, n ≥ 6 per group) to hypoxia, or mice (n ≥ 4 per group) to myocardial ischemia reduced O-GlcNAcylation, which later increased during reoxygenation/reperfusion. NRCMs (n ≥ 4 per group) infected with an adenovirus carrying nothing (control), adenoviral O-GlcNAc transferase (adds O-GlcNAc to proteins, AdOGT), adenoviral O-GlcNAcase (removes O-GlcNAc to proteins, AdOGA), vehicle or PUGNAc (blocks OGA; increases O-GlcNAc levels) were subjected to hypoxia-reoxygenation or H(2)O(2), and changes in Ca(2+) levels (via Fluo-4AM and Rhod-2AM), ROS (via DCF) and mPTP formation (via calcein-MitoTracker Red colocalization) were assessed using time-lapse fluorescence microscopy. Both OGT and OGA overexpression did not significantly (P > 0.05) alter baseline Ca(2+) or ROS levels. However, AdOGT significantly (P < 0.05) attenuated both hypoxia and oxidative stress-induced Ca(2+) overload and ROS generation. Additionally, OGA inhibition mitigated both H(2)O(2)-induced Ca(2+) overload and ROS generation. Although AdOGA exacerbated both hypoxia and H(2)O(2)-induced ROS generation, it had no effect on H(2)O(2)-induced Ca(2+) overload. We conclude that inhibition of Ca(2+) overload and ROS generation (inducers of mPTP) might be one mechanism through which O-GlcNAcylation reduces ischemia/hypoxia-mediated mPTP formation.


Assuntos
Acetilglucosamina/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Transdução de Sinais , Animais , Células Cultivadas , Glicosilação , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Ratos , Ratos Sprague-Dawley
20.
Am J Physiol Heart Circ Physiol ; 297(5): H1711-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19734355

RESUMO

We previously demonstrated that the O-linked beta-N-acetylglucosamine (O-GlcNAc) posttranslational modification confers cardioprotection at least partially through mitochondrial-dependent mechanisms, but it remained unclear if O-GlcNAc signaling interfered with other mechanisms of cell death. Because ischemia/hypoxia causes endoplasmic reticulum (ER) stress, we ascertained whether O-GlcNAc signaling could attenuate ER stress-induced cell death per se. Before induction of ER stress (with tunicamycin or brefeldin A), we adenovirally overexpressed O-GlcNAc transferase (AdOGT) or pharmacologically inhibited O-GlcNAcase [via O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate] to augment O-GlcNAc levels or adenovirally overexpressed O-GlcNAcase to reduce O-GlcNAc levels. AdOGT significantly (P < 0.05) attenuated the activation of the maladaptive arm of the unfolded protein response [according to C/EBP homologous protein (CHOP) activation] and cardiomyocyte death (reflected by percent propidium iodide positivity). Moreover, pharmacological inhibition of O-GlcNAcase significantly (P < 0.05) mitigated ER stress-induced CHOP activation and cardiac myocyte death. Interestingly, overexpression of GCA did not alter ER stress markers but exacerbated brefeldin A-induced cardiomyocyte death. We conclude that enhanced O-GlcNAc signaling represents a partially proadaptive response to reduce ER stress-induced cell death. These results provide new insights into a possible interaction between O-GlcNAc signaling and ER stress and may partially explain a mechanism of O-GlcNAc-mediated cardioprotection.


Assuntos
Acetilglucosamina/metabolismo , Retículo Endoplasmático/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Transdução de Sinais , Estresse Fisiológico , Acetilglucosamina/análogos & derivados , Acetilglucosamina/farmacologia , Adaptação Fisiológica , Animais , Animais Recém-Nascidos , Brefeldina A/farmacologia , Morte Celular , Hipóxia Celular , Células Cultivadas , Citoproteção , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/patologia , Inibidores Enzimáticos/farmacologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Oximas/farmacologia , Fenilcarbamatos/farmacologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos , Fator de Transcrição CHOP/metabolismo , Transfecção , Tunicamicina/farmacologia , beta-N-Acetil-Hexosaminidases/antagonistas & inibidores , beta-N-Acetil-Hexosaminidases/genética , beta-N-Acetil-Hexosaminidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA