Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Methods ; 203: 422-430, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34022351

RESUMO

Genetically encoded fluorescent biosensors allow intracellular signaling dynamics to be tracked in live cells and tissues using optical detection. Many such biosensors are based on the principle of Förster resonance energy transfer (FRET), and we have recently developed a simple approach for in vivo detection of FRET-based biosensor signals using fiber photometry. By combining fiber photometry with FRET-based biosensors, we were able to track GPCR-dependent signaling pathways over time, and in response to drug treatments in freely-moving adult rats. Recording from specific neuronal populations, we can quantify intracellular signaling while simultaneously measuring behavioral responses. Our approach, described in detail here, uses adeno-associated viruses infused intracerebrally in order to express genetically-encoded FRET-based biosensors. After several weeks to allow biosensor expression, fiber photometry is used in order to record drug responses in real time from freely-moving adult rats. This methodology would be compatible with other mammalian species and with many biosensors. Hence, it has wide applicability across a spectrum of neuroscience research, ranging from the study of neural circuits and behavior, to preclinical drug development and screening.


Assuntos
Técnicas Biossensoriais , Transferência Ressonante de Energia de Fluorescência , Animais , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Mamíferos , Ratos , Transdução de Sinais
2.
Mol Pharmacol ; 100(6): 526-539, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34503973

RESUMO

Genetically encoded biosensors can be used to track signaling events in living cells by measuring changes in fluorescence emitted by one or more fluorescent proteins. Here, we describe the use of genetically encoded biosensors based on Förster resonance energy transfer (FRET), combined with high-content microscopy, to image dynamic signaling events simultaneously in thousands of neurons in response to drug treatments. We first applied this approach to examine intercellular variation in signaling responses among cultured striatal neurons stimulated with multiple drugs. Using high-content FRET imaging and immunofluorescence, we identified neuronal subpopulations with unique responses to pharmacological manipulation and used nuclear morphology to identify medium spiny neurons within these heterogeneous striatal cultures. Focusing on protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in the cytoplasm and nucleus, we noted pronounced intercellular differences among putative medium spiny neurons, in both the magnitude and kinetics of signaling responses to drug application. Importantly, a conventional "bulk" analysis that pooled all cells in culture yielded a different rank order of drug potency than that revealed by single-cell analysis. Using a single-cell analytical approach, we dissected the relative contributions of PKA and ERK1/2 signaling in striatal neurons and unexpectedly identified a novel role for ERK1/2 in promoting nuclear activation of PKA in striatal neurons. This finding adds a new dimension of signaling crosstalk between PKA and ERK1/2 with relevance to dopamine D1 receptor signaling in striatal neurons. In conclusion, high-content single-cell imaging can complement and extend traditional population-level analyses and provides a novel vantage point from which to study cellular signaling. SIGNIFICANCE STATEMENT: High-content imaging revealed substantial intercellular variation in the magnitude and pattern of intracellular signaling events driven by receptor stimulation. Since individual neurons within the same population can respond differently to a given agonist, interpreting measures of intracellular signaling derived from the averaged response of entire neuronal populations may not always reflect what happened at the single-cell level. This study uses this approach to identify a new form of cross-talk between PKA and ERK1/2 signaling in the nucleus of striatal neurons.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Análise de Célula Única/métodos , Animais , Técnicas Biossensoriais/métodos , Núcleo Celular/metabolismo , Células Cultivadas , Corpo Estriado/citologia , Inibidores Enzimáticos/farmacologia , Feminino , Neurônios/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
3.
Sci Rep ; 10(1): 14426, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32879346

RESUMO

As with many G protein-coupled receptors (GPCRs), the signalling pathways regulated by the dopamine D1 receptor (D1R) are dynamic, cell type-specific, and can change in the face of disease or drug exposures. In striatal neurons, the D1R activates cAMP/protein kinase A (PKA) signalling. However, in Parkinson's disease (PD), alterations in this pathway lead to functional upregulation of extracellular regulated kinases 1/2 (ERK1/2), contributing to L-DOPA-induced dyskinesia (LID). In order to detect D1R activation in vivo and to study the progressive dysregulation of D1R signalling in PD and LID, we developed ratiometric fiber-photometry with Förster resonance energy transfer (FRET) biosensors and optically detected PKA and ERK1/2 signalling in freely moving rats. We show that in Parkinsonian animals, D1R signalling through PKA and ERK1/2 is sensitized, but that following chronic treatment with L-DOPA, these pathways become partially desensitized while concurrently D1R activation leads to greater induction of dyskinesia.


Assuntos
Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Doença de Parkinson/metabolismo , Receptores de Dopamina D1/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Cell Rep ; 14(11): 2554-61, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-26972010

RESUMO

Cockayne syndrome (CS) is a severe neurodevelopmental disorder characterized by growth abnormalities, premature aging, and photosensitivity. Mutation of Cockayne syndrome B (CSB) affects neuronal gene expression and differentiation, so we attempted to bypass its function by expressing downstream target genes. Intriguingly, ectopic expression of Synaptotagmin 9 (SYT9), a key component of the machinery controlling neurotrophin release, bypasses the need for CSB in neuritogenesis. Importantly, brain-derived neurotrophic factor (BDNF), a neurotrophin implicated in neuronal differentiation and synaptic modulation, and pharmacological mimics such as 7,8-dihydroxyflavone and amitriptyline can compensate for CSB deficiency in cell models of neuronal differentiation as well. SYT9 and BDNF are downregulated in CS patient brain tissue, further indicating that sub-optimal neurotrophin signaling underlies neurological defects in CS. In addition to shedding light on cellular mechanisms underlying CS and pointing to future avenues for pharmacological intervention, these data suggest an important role for SYT9 in neuronal differentiation.


Assuntos
DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Amitriptilina/farmacologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Síndrome de Cockayne/metabolismo , Síndrome de Cockayne/patologia , DNA Helicases/antagonistas & inibidores , DNA Helicases/genética , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Regulação para Baixo/efeitos dos fármacos , Flavonas/farmacologia , Humanos , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/metabolismo , Microscopia de Fluorescência , Proteínas de Ligação a Poli-ADP-Ribose , Proteínas Tirosina Quinases/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Receptor trkB , Sinaptotagminas/antagonistas & inibidores , Sinaptotagminas/genética , Sinaptotagminas/metabolismo
5.
Int J Neuropsychopharmacol ; 16(2): 477-83, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22827965

RESUMO

The dopamine D5 receptor (D5R) exhibits a wide distribution in prefrontal cortex (PFC) but its role in this region has not yet been elucidated. In the present study, we identified a novel physiological function for the D(5)R as a regulator of brain-derived neurotrophic factor (BDNF) and Akt signalling in PFC. Specifically, acute activation of the D(5)R by the dopamine agonist SKF 83959 enhanced BDNF expression and signalling through its receptor, tropomyosin receptor kinase B (TrkB), in rats and in mice gene-deleted for the D1 receptor but not the D(5)R. These changes were concomitant with increased expression of GAD67, a protein whose down-regulation has been implicated in the aetiology of schizophrenia. Furthermore, D(5)R activation increased phosphorylation of Akt at the Ser(473) site, consequently decreasing the activity of its substrate GSK-3ß. These findings could have wide-reaching implications given evidence showing activation of these pathways in PFC has therapeutic effects in neuropsychiatric disorders such as drug addiction, schizophrenia and depression.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Dopamina D5/fisiologia , Transdução de Sinais/fisiologia , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/análogos & derivados , 2,3,4,5-Tetra-Hidro-7,8-Di-Hidroxi-1-Fenil-1H-3-Benzazepina/farmacologia , Análise de Variância , Animais , Agonistas de Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D1/deficiência , Receptores de Dopamina D5/deficiência , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA