Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1353682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590438

RESUMO

Introduction: Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic in many tropical countries globally. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicemia, and thus the outcome of infection can depend on the host immune responses. The aims of this study were to firstly, characterize the macrophage immune response to B. pseudomallei and secondly, to determine whether the immune response was modified in the presence of novel inhibitors targeting the virulence factor, the macrophage infectivity potentiator (Mip) protein. We hypothesized that inhibition of Mip in B. pseudomallei would disarm the bacteria and result in a host beneficial immune response. Methods: Murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence of small-molecule inhibitors targeting the Mip protein. RNA-sequencing was performed on infected cells four hours post-infection. Secreted cytokines and lactose dehydrogenase were measured in cell culture supernatants 24 hours post-infection. Viable, intracellular B. pseudomallei in macrophages were also enumerated 24 hours post-infection. Results: Global transcriptional profiling of macrophages infected with B. pseudomallei by RNA-seq demonstrated upregulation of immune-associated genes, in particular a significant enrichment of genes in the TNF signaling pathway. Treatment of B. pseudomallei-infected macrophages with the Mip inhibitor, AN_CH_37 resulted in a 5.3-fold reduction of il1b when compared to cells treated with DMSO, which the inhibitors were solubilized in. A statistically significant reduction in IL-1ß levels in culture supernatants was seen 24 hours post-infection with AN_CH_37, as well as other pro-inflammatory cytokines, namely IL-6 and TNF-α. Treatment with AN_CH_37 also reduced the survival of B. pseudomallei in macrophages after 24 hours which was accompanied by a significant reduction in B. pseudomallei-induced cytotoxicity as determined by lactate dehydrogenase release. Discussion: These data highlight the potential to utilize Mip inhibitors in reducing potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. This could be of significance since overstimulation of pro-inflammatory responses can result in immunopathology, tissue damage and septic shock.


Assuntos
Burkholderia pseudomallei , Melioidose , Animais , Camundongos , Burkholderia pseudomallei/metabolismo , Melioidose/microbiologia , Macrófagos/microbiologia , Citocinas/metabolismo , Transdução de Sinais
2.
Oncoimmunology ; 13(1): 2345859, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686178

RESUMO

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRß) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRß repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRß repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRß clonotypes was observed in responding tumours. Machine learning identified TCRß CDR3 signatures unique to each tumour model, and signatures associated with ICT response at various timepoints before or during ICT. Clonally expanded CD8+ T cells in responding tumours post ICT displayed effector T cell gene signatures and phenotype. An early burst of clonal expansion during ICT is associated with response, and we report unique dynamics in TCRß signatures associated with ICT response.


Assuntos
Inibidores de Checkpoint Imunológico , Linfócitos do Interstício Tumoral , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo , Camundongos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Feminino
3.
Clin Infect Dis ; 79(1): 43-51, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38576380

RESUMO

BACKGROUND: Stratification to categorize patients with Staphylococcus aureus bacteremia (SAB) as low or high risk for metastatic infection may direct diagnostic evaluation and enable personalized management. We investigated the frequency of metastatic infections in low-risk SAB patients, their clinical relevance, and whether omission of routine imaging is associated with worse outcomes. METHODS: We performed a retrospective cohort study at 7 Dutch hospitals among adult patients with low-risk SAB, defined as hospital-acquired infection without treatment delay, absence of prosthetic material, short duration of bacteremia, and rapid defervescence. Primary outcome was the proportion of patients whose treatment plan changed due to detected metastatic infections, as evaluated by both actual therapy administered and by linking a adjudicated diagnosis to guideline-recommended treatment. Secondary outcomes were 90-day relapse-free survival and factors associated with the performance of diagnostic imaging. RESULTS: Of 377 patients included, 298 (79%) underwent diagnostic imaging. In 15 of these 298 patients (5.0%), imaging findings during patient admission had been interpreted as metastatic infections that should extend treatment. Using the final adjudicated diagnosis, 4 patients (1.3%) had clinically relevant metastatic infection. In a multilevel multivariable logistic regression analysis, 90-day relapse-free survival was similar between patients without imaging and those who underwent imaging (81.0% versus 83.6%; adjusted odds ratio, 0.749; 95% confidence interval, .373-1.504). CONCLUSIONS: Our study advocates risk stratification for the management of SAB patients. Prerequisites are follow-up blood cultures, bedside infectious diseases consultation, and a critical review of disease evolution. Using this approach, routine imaging could be omitted in low-risk patients.


Assuntos
Bacteriemia , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Estudos Retrospectivos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/diagnóstico , Masculino , Bacteriemia/microbiologia , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Idoso , Staphylococcus aureus/isolamento & purificação , Países Baixos/epidemiologia , Diagnóstico por Imagem/métodos , Adulto , Infecção Hospitalar/microbiologia
4.
PLoS One ; 18(5): e0274364, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37146029

RESUMO

Mesothelioma is characterised by its aggressive invasive behaviour, affecting the surrounding tissues of the pleura or peritoneum. We compared an invasive pleural model with a non-invasive subcutaneous model of mesothelioma and performed transcriptomic analyses on the tumour samples. Invasive pleural tumours were characterised by a transcriptomic signature enriched for genes associated with MEF2C and MYOCD signaling, muscle differentiation and myogenesis. Further analysis using the CMap and LINCS databases identified geldanamycin as a potential antagonist of this signature, so we evaluated its potential in vitro and in vivo. Nanomolar concentrations of geldanamycin significantly reduced cell growth, invasion, and migration in vitro. However, administration of geldanamycin in vivo did not result in significant anti-cancer activity. Our findings show that myogenesis and muscle differentiation pathways are upregulated in pleural mesothelioma which may be related to the invasive behaviour. However, geldanamycin as a single agent does not appear to be a viable treatment for mesothelioma.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Mesotelioma/tratamento farmacológico , Mesotelioma/genética , Neoplasias Pleurais/patologia , Proliferação de Células , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
5.
Front Immunol ; 13: 1050718, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505400

RESUMO

Natural killer (NK) cells have an intrinsic ability to detect and eliminate leukaemic cells. Cellular therapies using cytokine-activated NK cells have emerged as promising treatments for patients with advanced leukaemia. However, not all patients respond to current NK cell therapies, and thus improvements in efficacy are required. Type I interferons (IFN-I) are a family of potent immunomodulatory cytokines with a known ability to modulate NK cell responses against cancer. Although the human IFN-I family comprises 16 distinct subtypes, only IFNα2 has been widely explored as an anti-cancer agent. Here, we investigated the individual immunomodulatory effects each IFNα subtype and IFNß had on NK cell functionality to determine whether a particular subtype confers enhanced effector activity against leukaemia. Importantly, IFNα14 and IFNß were identified as superior activators of NK cell effector function in vitro. To test the ability of these subtypes to enhance NK cell activity in vivo, IFN-I stimulation was overlaid onto a standard ex vivo expansion protocol to generate NK cells for adoptive cell therapy. Interestingly, infusion of NK cells pre-activated with IFNα14, but not IFNß, significantly prolonged survival in a preclinical model of leukaemia compared to NK cells expanded without IFN-I. Collectively, these results highlight the diverse immunomodulatory potencies of individual IFN-I subtypes and support further investigation into the use of IFNα14 to favourably modulate NK cells against leukaemia.


Assuntos
Interferon Tipo I , Leucemia , Humanos , Células Matadoras Naturais , Leucemia/terapia , Imunomodulação , Imunoterapia Adotiva , Anticorpos , Citocinas
6.
J Allergy Clin Immunol ; 150(4): 817-829.e6, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35643377

RESUMO

BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic respiratory diseases, and some patients have overlapping disease features, termed asthma-COPD overlap (ACO). Patients characterized with ACO have increased disease severity; however, the mechanisms driving this have not been widely studied. OBJECTIVES: This study sought to characterize the phenotypic and transcriptomic features of experimental ACO in mice induced by chronic house dust mite antigen and cigarette smoke exposure. METHODS: Female BALB/c mice were chronically exposed to house dust mite antigen for 11 weeks to induce experimental asthma, cigarette smoke for 8 weeks to induce experimental COPD, or both concurrently to induce experimental ACO. Lung inflammation, structural changes, and lung function were assessed. RNA-sequencing was performed on separated airway and parenchyma lung tissues to assess transcriptional changes. Validation of a novel upstream driver SPI1 in experimental ACO was assessed using the pharmacological SPI1 inhibitor, DB2313. RESULTS: Experimental ACO recapitulated features of both asthma and COPD, with mixed pulmonary eosinophilic/neutrophilic inflammation, small airway collagen deposition, and increased airway hyperresponsiveness. Transcriptomic analysis identified common and distinct dysregulated gene clusters in airway and parenchyma samples in experimental asthma, COPD, and ACO. Upstream driver analysis revealed increased expression of the transcription factor Spi1. Pharmacological inhibition of SPI1 using DB2313, reduced airway remodeling and airway hyperresponsiveness in experimental ACO. CONCLUSIONS: A new experimental model of ACO featuring chronic dual exposures to house dust mite and cigarette smoke mimics key disease features observed in patients with ACO and revealed novel disease mechanisms, including upregulation of SPI1, that are amenable to therapy.


Assuntos
Asma , Eosinofilia , Doença Pulmonar Obstrutiva Crônica , Hipersensibilidade Respiratória , Animais , Feminino , Camundongos , RNA , Fatores de Transcrição , Transcriptoma
7.
Front Oncol ; 12: 849793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402250

RESUMO

With immune checkpoint therapy (ICT) having reshaped the treatment of many cancers, the next frontier is to identify and develop novel combination therapies to improve efficacy. Previously, we and others identified beneficial immunological effects of the vitamin A derivative tretinoin on anti-tumour immunity. Although it is known that tretinoin preferentially depletes myeloid derived suppressor cells in blood, little is known about the effects of tretinoin on the tumour microenvironment, hampering the rational design of clinical trials using tretinoin in combination with ICT. Here, we aimed to identify how tretinoin changed the tumour microenvironment in mouse tumour models, using flow cytometry and RNAseq, and we sought to use that information to establish optimal dosing and scheduling of tretinoin in combination with several ICT antibodies in multiple cancer models. We found that tretinoin rapidly induced an interferon dominated inflammatory tumour microenvironment, characterised by increased CD8+ T cell infiltration. This phenotype completely overlapped with the phenotype that was induced by ICT itself, and we confirmed that the combination further amplified this inflammatory milieu. The addition of tretinoin significantly improved the efficacy of anti-CTLA4/anti-PD-L1 combination therapy, and staggered scheduling was more efficacious than concomitant scheduling, in a dose-dependent manner. The positive effects of tretinoin could be extended to ICT antibodies targeting OX40, GITR and CTLA4 monotherapy in multiple cancer models. These data show that tretinoin induces an interferon driven, CD8+ T cell tumour microenvironment that is responsive to ICT.

8.
J Allergy Clin Immunol ; 150(1): 93-103, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35177255

RESUMO

BACKGROUND: Results from recent clinical studies suggest potential efficacy of immune training (IT)-based approaches for protection against severe lower respiratory tract infections in infants, but underlying mechanisms are unclear. OBJECTIVE: We used systems-level analyses to elucidate IT mechanisms in infants in a clinical trial setting. METHODS: Pre- and posttreatment peripheral blood mononuclear cells from a placebo-controlled trial in which winter treatment with the IT agent OM85 reduced infant respiratory infection frequency and/or duration were stimulated for 24 hours with the virus/bacteria mimics polyinosinic:polycytidylic acid/lipopolysaccharide. Transcriptomic profiling via RNA sequencing, pathway and upstream regulator analyses, and systems-level gene coexpression network analyses were used sequentially to elucidate and compare responses in treatment and placebo groups. RESULTS: In contrast to subtle changes in antivirus-associated polyinosinic:polycytidylic acid response profiles, the bacterial lipopolysaccharide-triggered gene coexpression network responses exhibited OM85 treatment-associated upregulation of IFN signaling. This was accompanied by network rewiring resulting in increased coordination of TLR4 expression with IFN pathway-associated genes (especially master regulator IRF7); segregation of TNF and IFN-γ (which potentially synergize to exaggerate inflammatory sequelae) into separate expression modules; and reduced size/complexity of the main proinflammatory network module (containing, eg, IL-1,IL-6, and CCL3). Finally, we observed a reduced capacity for lipopolysaccharide-induced inflammatory cytokine (eg, IL-6 and TNF) production in the OM85 group. CONCLUSION: These changes are consistent with treatment-induced enhancement of bacterial pathogen detection/clearance capabilities concomitant with enhanced capacity to regulate ensuing inflammatory response intensity and duration. We posit that IT agents exemplified by OM85 potentially protect against severe lower respiratory tract infections in infants principally by effects on innate immune responses targeting the bacterial components of the mixed respiratory viral/bacterial infections that are characteristic of this age group.


Assuntos
Infecções Respiratórias , Vírus , Humanos , Lactente , Interleucina-6/metabolismo , Leucócitos Mononucleares , Lipopolissacarídeos , Poli I-C
9.
iScience ; 25(1): 103571, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-34984327

RESUMO

Mesothelioma is a cancer that typically originates in the pleura of the lungs. It rapidly invades the surrounding tissues, causing pain and shortness of breath. We compared cell lines injected either subcutaneously or intrapleurally and found that only the latter resulted in invasive and rapid growth. Pleural tumors displayed a transcriptional signature consistent with increased activity of nuclear receptors PPARα and PPARγ and with an increased abundance of endogenous PPAR-activating ligands. We found that chemical probe GW6471 is a potent, dual PPARα/γ antagonist with anti-invasive and anti-proliferative activity in vitro. However, administration of GW6471 at doses that provided sustained plasma exposure levels sufficient for inhibition of PPARα/γ transcriptional activity did not result in significant anti-mesothelioma activity in mice. Lastly, we demonstrate that the in vitro anti-tumor effect of GW6471 is off-target. We conclude that dual PPARα/γ antagonism alone is not a viable treatment modality for mesothelioma.

10.
Eur Respir J ; 59(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34675050

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease in which circulatory biomarkers have the potential for guiding management in clinical practice. We assessed the prognostic role of serum biomarkers in three independent IPF cohorts: Australian Idiopathic Pulmonary Fibrosis Registry (AIPFR), Trent Lung Fibrosis (TLF) and Prospective Observation of Fibrosis in the Lung Clinical Endpoints (PROFILE). METHODS: In the AIPFR cohort, candidate proteins were assessed by ELISA as well as in an unbiased proteomic approach. LASSO (least absolute shrinkage and selection operator) regression was used to restrict the selection of markers that best accounted for the progressor phenotype at 1 year in the AIPFR cohort, and subsequently prospectively selected for replication in the validation TLF cohort and assessed retrospectively in the PROFILE cohort. Four significantly replicating biomarkers were aggregated into a progression index model based on tertiles of circulating concentrations. RESULTS: 189 participants were included in the AIPFR cohort, 205 participants from the TLF cohort and 122 participants from the PROFILE cohort. Differential biomarker expression was observed by ELISA and replicated for osteopontin, matrix metallopeptidase-7, intercellular adhesion molecule-1 and periostin for those with a progressor phenotype at 1 year. Proteomic data did not replicate. The progression index in the AIPFR, TLF and PROFILE cohorts predicted risk of progression, mortality and progression-free survival. A statistical model incorporating the progression index demonstrated the capacity to distinguish disease progression at 12 months, which was increased beyond the clinical GAP (gender, age and physiology) score model alone in all cohorts, and significantly so within the incidence-based TLF and PROFILE cohorts. CONCLUSION: A panel of circulatory biomarkers can provide potentially valuable clinical assistance in the prognosis of IPF patients.


Assuntos
Fibrose Pulmonar Idiopática , Austrália , Biomarcadores , Humanos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/genética , Estudos Prospectivos , Proteômica , Estudos Retrospectivos
11.
Front Immunol ; 12: 765705, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777383

RESUMO

Over the past 20 years natural killer (NK) cell-based immunotherapies have emerged as a safe and effective treatment option for patients with relapsed or refractory leukemia. Unlike T cell-based therapies, NK cells harbor an innate capacity to eliminate malignant cells without prior sensitization and can be adoptively transferred between individuals without the need for extensive HLA matching. A wide variety of therapeutic NK cell sources are currently being investigated clinically, including allogeneic donor-derived NK cells, stem cell-derived NK cells and NK cell lines. However, it is becoming increasingly clear that not all NK cells are endowed with the same antitumor potential. Despite advances in techniques to enhance NK cell cytotoxicity and persistence, the initial identification and utilization of highly functional NK cells remains essential to ensure the future success of adoptive NK cell therapies. Indeed, little consideration has been given to the identification and selection of donors who harbor NK cells with potent antitumor activity. In this regard, there is currently no standard donor selection criteria for adoptive NK cell therapy. Here, we review our current understanding of the factors which govern NK cell functional fate, and propose a paradigm shift away from traditional phenotypic characterization of NK cell subsets towards a functional profile based on molecular and metabolic characteristics. We also discuss previous selection models for NK cell-based immunotherapies and highlight important considerations for the selection of optimal NK cell donors for future adoptive cell therapies.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Animais , Humanos , Fenótipo
12.
J Cyst Fibros ; 20(1): 97-105, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32684439

RESUMO

BACKGROUND: Aberrant responses by the cystic fibrosis airway epithelium during viral infection may underly the clinical observations. Whether CFTR modulators affect antiviral responses by CF epithelia is presently unknown. We tested the hypothesis that treatment of CF epithelial cells with ivacaftor (Iva) or ivacaftor/lumacaftor (Iva/Lum) would improve control of rhinovirus infection. METHODS: Nineteen CF epithelial cultures (10 homozygous for p.Phe508del as CFTR Class 2, 9 p.Phe508del/p.Gly551Asp as Class 3) were infected with rhinovirus 1B at multiplicity of infection 12 for 24 h. Culture RNA and supernatants were harvested to assess gene and protein expression respectively. RESULTS: RNA-seq analysis comparing rhinovirus infected cultures to control identified 796 and 629 differentially expressed genes for Class 2 and Class 3, respectively. This gene response was highly conserved when cells were treated with CFTR modulators and were predicted to be driven by the same interferon-pathway transcriptional regulators (IFNA, IFNL1, IFNG, IRF7, STAT1). Direct comparisons between treated and untreated infected cultures did not yield any differentially expressed genes for Class 3 and only 68 genes for Class 2. Changes were predominantly related to regulators of lipid metabolism and inflammation, aspects of epithelial biology known to be dysregulated in CF. In addition, CFTR modulators did not affect viral copy number, or levels of pro-inflammatory cytokines produced post-infection. CONCLUSIONS: Though long-term clinical data is not yet available, results presented here suggest that first generation CFTR modulators do not interfere with core airway epithelial responses to rhinovirus infection. Future work should investigate the latest triple modulation therapies.


Assuntos
Aminofenóis/farmacologia , Aminopiridinas/farmacologia , Benzodioxóis/farmacologia , Resfriado Comum/virologia , Fibrose Cística/genética , Quinolonas/farmacologia , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/virologia , Rhinovirus , Células Cultivadas , Resfriado Comum/complicações , Fibrose Cística/complicações , Combinação de Medicamentos , Humanos , Mucosa Respiratória/citologia
13.
BMC Plant Biol ; 20(1): 380, 2020 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-32811442

RESUMO

BACKGROUND: Glycosylphosphatidylinositol (GPI) addition is one of the several post-translational modifications to proteins that increase their affinity for membranes. In eukaryotes, the GPI transamidase complex (GPI-T) catalyzes the attachment of pre-assembled GPI anchors to GPI-anchored proteins (GAPs) through a transamidation reaction. A mutation in AtGPI8 (gpi8-2), the putative catalytic subunit of GPI-T in Arabidopsis, is transmitted normally through the female gametophyte (FG), indicating the FG tolerates loss of GPI transamidation. In contrast, gpi8-2 almost completely abolishes male gametophyte (MG) function. Still, the unexpected finding that gpi8-2 FGs function normally requires further investigation. Additionally, specific developmental defects in the MG caused by loss of GPI transamidation remain poorly characterized. RESULTS: Here we investigated the effect of loss of AtPIG-S, another GPI-T subunit, in both gametophytes. Like gpi8-2, we showed that a mutation in AtPIG-S (pigs-1) disrupted synergid localization of LORELEI (LRE), a putative GAP critical for pollen tube reception by the FG. Still, pigs-1 is transmitted normally through the FG. Conversely, pigs-1 severely impaired male gametophyte (MG) function during pollen tube emergence and growth in the pistil. A pPIGS:GFP-PIGS transgene complemented these MG defects and enabled generation of pigs-1/pigs-1 seedlings. However, the pPIGS:GFP-PIGS transgene seemingly failed to rescue the function of AtPIG-S in the sporophyte, as pigs-1/pigs-1, pPIGS:GFP-PIGS seedlings died soon after germination. CONCLUSIONS: Characterization of pigs-1 provided further evidence that the FG tolerates loss of GPI transamidation more than the MG and that the MG compared to the FG may be a better haploid system to study the role of GPI-anchoring. Pigs-1 pollen develops normally and thus represent a tool in which GPI anchor biosynthesis and transamidation of GAPs have been uncoupled, offering a potential way to study free GPI in plant development. While previously reported male fertility defects of GPI biosynthesis mutants could have been due either to loss of GPI or GAPs lacking the GPI anchor, our results clarified that the loss of mature GAPs underlie male fertility defects of GPI-deficient pollen grains, as pigs-1 is defective only in the downstream transamidation step.


Assuntos
Aciltransferases/fisiologia , Arabidopsis/enzimologia , Arabidopsis/crescimento & desenvolvimento , Tubo Polínico/crescimento & desenvolvimento , Aciltransferases/genética , Proteínas de Arabidopsis/metabolismo , Clonagem Molecular , Técnicas de Genotipagem , Glicoproteínas de Membrana/metabolismo , Mutação , Pólen/genética , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Nicotiana/genética
14.
Clin Transl Immunology ; 9(7): e1151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695339

RESUMO

OBJECTIVES: Natural killer (NK) cells are an attractive source of cells for an 'off the shelf' cellular therapy because of their innate capacity to target malignant cells, and ability to be transferred between donors and patients. However, since not all NK cells are equally effective at targeting cancer, selecting the right donor for cellular therapy is critical for the success of the treatment. Recently, cellular therapies utilising NK cells from cytomegalovirus (CMV)-seropositive donors have been explored. However, whether these NK cells are the best source to treat paediatric acute lymphoblastic leukaemia (ALL) remains unclear. METHODS: Using a panel of patient-derived paediatric B- and T-ALL, we assessed the ability of NK cells from 49 healthy donors to mount an effective functional response against these two major subtypes of ALL. RESULTS: From this cohort, we have identified a pool of donors with superior activity against multiple ALL cells. While these donors were more likely to be CMV+, we identified multiple CMVneg donors within this group. Furthermore, NK cells from these donors recognised B- and T-ALL through different activating receptors. Dividing functional NK cells into 29 unique subsets, we observed that within each individual the same NK cell subsets dominated across all ALL cells. Intriguingly, this occurred despite the ALL cells in our panel expressing different combinations of NK cell ligands. Finally, we can demonstrate that cellular therapy products derived from these superior donors significantly delayed leukaemia progression in preclinical models of ALL. CONCLUSIONS: We have identified a pool of superior donors that are effective against a range of ALL cells, representing a potential pool of donors that can be used as an adoptive NK cell therapy to treat paediatric ALL.

15.
Nat Protoc ; 15(5): 1628-1648, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32238953

RESUMO

The therapeutic response to immune checkpoint blockade (ICB) is highly variable, not only between different cancers but also between patients with the same cancer type. The biological mechanisms underlying these differences in response are incompletely understood. Identifying correlates in patient tumor samples is challenging because of genetic and environmental variability. Murine studies usually compare different tumor models or treatments, introducing potential confounding variables. This protocol describes bilateral murine tumor models, derived from syngeneic cancer cell lines, that display a symmetrical yet dichotomous response to ICB. These models enable detailed analysis of whole tumors in a highly homogeneous background, combined with knowledge of the therapeutic outcome within a few weeks, and could potentially be used for mechanistic studies using other (immuno-)therapies. We discuss key considerations and describe how to use two cell lines as fully optimized models. We discuss experimental details, including proper inoculation technique to achieve symmetry and one-sided surgical tumor removal, which takes only 5 min per mouse. Furthermore, we outline the preparation of bulk tissue or single-cell suspensions for downstream analyses such as bulk RNA-seq, immunohistochemistry, single-cell RNA-seq and flow cytometry.


Assuntos
Antineoplásicos Imunológicos , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Experimentais , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C
16.
J Allergy Clin Immunol ; 145(6): 1562-1573, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32113981

RESUMO

BACKGROUND: Emerging evidence suggests that disease vulnerability is expressed throughout the airways, the so-called unified airway hypothesis, but the evidence to support this is predominantly indirect. OBJECTIVES: We sought to establish the transcriptomic profiles of the upper and lower airways and determine their level of similarity irrespective of airway symptoms (wheeze) and allergy. METHODS: We performed RNA sequencing on upper and lower airway epithelial cells from 63 children with or without wheeze and accompanying atopy, using differential gene expression and gene coexpression analyses to determine transcriptional similarity. RESULTS: We observed approximately 91% homology in the expressed genes between the 2 sites. When coexpressed genes were grouped into modules relating to biological functions, all were found to be conserved between the 2 regions, resulting in a consensus network containing 16 modules associated with ribosomal function, metabolism, gene expression, mitochondrial activity, and antiviral responses through IFN activity. Although symptom-associated gene expression changes were more prominent in the lower airway, they were reflected in nasal epithelium and included IL-1 receptor like 1, prostaglandin-endoperoxide synthase 1, CCL26, and periostin. Through network analysis we identified a cluster of coexpressed genes associated with atopic wheeze in the lower airway, which could equally distinguish atopic and nonatopic phenotypes in upper airway samples. CONCLUSIONS: We show that the upper and lower airways are significantly conserved in their transcriptional composition, and that variations associated with disease are present in both nasal and tracheal epithelium. Findings from this study supporting a unified airway imply that clinical insight regarding the lower airway in health and disease can be gained from studying the nasal epithelium.


Assuntos
Células Epiteliais/metabolismo , Mucosa Respiratória/metabolismo , Sistema Respiratório/metabolismo , Transcriptoma/genética , Adolescente , Moléculas de Adesão Celular/genética , Quimiocina CCL26/genética , Criança , Pré-Escolar , Ciclo-Oxigenase 1/genética , Feminino , Humanos , Hipersensibilidade/genética , Masculino , Receptores Tipo I de Interleucina-1/genética , Sons Respiratórios/genética
17.
Sci Transl Med ; 11(501)2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316010

RESUMO

Cancer immunotherapy using antibodies that target immune checkpoints has delivered outstanding results. However, responses only occur in a subset of patients, and it is not fully understood what biological processes determine an effective outcome. This lack of understanding hinders the development of rational combination treatments. We set out to define the pretreatment microenvironment associated with an effective outcome by using the fact that inbred mouse strains bearing monoclonal cancer cell line-derived tumors respond in a dichotomous manner to immune checkpoint blockade (ICB). We compared the cellular composition and gene expression profiles of responsive and nonresponsive tumors from mice before ICB and validated the findings in cohorts of patients with cancer treated with ICB antibodies. We found that responsive tumors were characterized by an inflammatory gene expression signature consistent with up-regulation of signal transducer and activator of transcription 1 (STAT1) and Toll-like receptor 3 (TLR3) signaling and down-regulation of interleukin-10 (IL-10) signaling. In addition, responsive tumors had more infiltrating-activated natural killer (NK) cells, which were necessary for response. Pretreatment of mice with large established tumors using the STAT1-activating cytokine interferon-γ (IFNγ), the TLR3 ligand poly(I:C), and an anti-IL-10 antibody sensitized tumors to ICB by attracting IFNγ-producing NK cells into the tumor, resulting in increased cure rates. Our results identify a pretreatment tumor microenvironment that predicts response to ICB, which can be therapeutically attained. These data suggest a biomarker-driven approach to patient management to establish whether a patient would benefit from treatment with sensitizing therapeutics before ICB.


Assuntos
Imunoterapia , Células Matadoras Naturais/imunologia , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais , Microambiente Tumoral/imunologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Células Clonais , Terapia Combinada , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Fenótipo
18.
Respirology ; 23(12): 1117-1126, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30218470

RESUMO

Respiratory diseases such as asthma, chronic obstructive pulmonary disease and lung cancer represent a critical area for medical research as millions of people are affected globally. The development of new strategies for treatment and/or prevention, and the identification of biomarkers for patient stratification and early detection of disease inception are essential to reducing the impact of lung diseases. The successful translation of research into clinical practice requires a detailed understanding of the underlying biology. In this regard, the advent of next-generation sequencing and mass spectrometry has led to the generation of an unprecedented amount of data spanning multiple layers of biological regulation (genome, epigenome, transcriptome, proteome, metabolome and microbiome). Dealing with this wealth of data requires sophisticated bioinformatics and statistical tools. Here, we review the basic concepts in bioinformatics and genomic data analysis and illustrate the application of these tools to further our understanding of lung diseases. We also highlight the potential for data integration of multi-omic profiles and computational drug repurposing to define disease subphenotypes and match them to targeted therapies, paving the way for personalized medicine.


Assuntos
Biomarcadores , Biologia Computacional/métodos , Genômica/métodos , Doenças Respiratórias , Diagnóstico Precoce , Humanos , Medicina de Precisão , Doenças Respiratórias/genética , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/terapia , Medição de Risco/métodos , Pesquisa Translacional Biomédica/métodos
19.
Clin Transl Immunology ; 1(11): e2, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25505947

RESUMO

Pulmonary infections with non-tuberculous mycobacteria (NTM) affect a subset of older individuals (mostly women) with no known immunological defects. As NTMs are intracellular pathogens, it is important to establish whether NTM disease is associated with defective production of Th1 cytokines or poor responses by host macrophage/monocytes. We have shown that patients display vigorous production of interferon gamma (IFNγ) when CD4 T cells are stimulated with mycobacterial antigens. This implicated the macrophage response to IFNγ. Blood monocytes are poorly representative of lung macrophages, so monocyte-derived macrophages (MDMs) were created and then stimulated with lipomannan (a Toll-like receptor (TLR)2 agonist), lipopolysaccharide (LPS; a TLR4 agonist) or recombinant human IFNγ. MDMs from NTM patients, their offspring and healthy donors expressed similar amounts of IFNγR1, and cellular responses to IFNγ were similar, so there is no evidence of a genetic defect in this pathway. MDMs from NTM patients produced less interleukin-6 in response to LPS (P<0.01) than cells from controls, but other cytokine responses were normal. This warrants further study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA