Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(12)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38931163

RESUMO

Maternal obesity and/or Western diet (WD) is associated with an increased risk of metabolic dysfunction-associated steatotic liver disease (MASLD) in offspring, driven, in part, by the dysregulation of the early life microbiome. Here, using a mouse model of WD-induced maternal obesity, we demonstrate that exposure to a disordered microbiome from WD-fed dams suppressed circulating levels of endogenous ligands of the aryl hydrocarbon receptor (AHR; indole, indole-3-acetate) and TMAO (a product of AHR-mediated transcription), as well as hepatic expression of Il10 (an AHR target), in offspring at 3 weeks of age. This signature was recapitulated by fecal microbial transfer from WD-fed pregnant dams to chow-fed germ-free (GF) lactating dams following parturition and was associated with a reduced abundance of Lactobacillus in GF offspring. Further, the expression of Il10 was downregulated in liver myeloid cells and in LPS-stimulated bone marrow-derived macrophages (BMDM) in adult offspring, suggestive of a hypo-responsive, or tolerant, innate immune response. BMDMs from adult mice lacking AHR in macrophages exhibited a similar tolerogenic response, including diminished expression of Il10. Overall, our study shows that exposure to maternal WD alters microbial metabolites in the offspring that affect AHR signaling, potentially contributing to innate immune hypo-responsiveness and progression of MASLD, highlighting the impact of early life gut dysbiosis on offspring metabolism. Further investigations are warranted to elucidate the complex interplay between maternal diet, gut microbial function, and the development of neonatal innate immune tolerance and potential therapeutic interventions targeting these pathways.


Assuntos
Dieta Ocidental , Microbioma Gastrointestinal , Imunidade Inata , Receptores de Hidrocarboneto Arílico , Triptofano , Animais , Feminino , Gravidez , Dieta Ocidental/efeitos adversos , Triptofano/metabolismo , Camundongos , Receptores de Hidrocarboneto Arílico/metabolismo , Camundongos Endogâmicos C57BL , Interleucina-10/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Obesidade Materna/metabolismo , Fígado/metabolismo , Fenômenos Fisiológicos da Nutrição Materna , Masculino , Macrófagos/metabolismo , Macrófagos/imunologia , Modelos Animais de Doenças
2.
Biomolecules ; 11(10)2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34680074

RESUMO

Pyrroloquinoline quinone (PQQ) is associated with biological processes such as mitochondriogenesis, reproduction, growth, and aging. In addition, PQQ attenuates clinically relevant dysfunctions (e.g., those associated with ischemia, inflammation and lipotoxicity). PQQ is novel among biofactors that are not currently accepted as vitamins or conditional vitamins. For example, the absence of PQQ in diets produces a response like a vitamin-related deficiency with recovery upon PQQ repletion in a dose-dependent manner. Moreover, potential health benefits, such as improved metabolic flexibility and immuno-and neuroprotection, are associated with PQQ supplementation. Here, we address PQQ's role as an enzymatic cofactor or accessory factor and highlight mechanisms underlying PQQ's actions. We review both large scale and targeted datasets demonstrating that a neonatal or perinatal PQQ deficiency reduces mitochondria content and mitochondrial-related gene expression. Data are reviewed that suggest PQQ's modulation of lactate acid and perhaps other dehydrogenases enhance NAD+-dependent sirtuin activity, along with the sirtuin targets, such as PGC-1α, NRF-1, NRF-2 and TFAM; thus, mediating mitochondrial functions. Taken together, current observations suggest vitamin-like PQQ has strong potential as a potent therapeutic nutraceutical.


Assuntos
Antioxidantes/farmacologia , Doença , Saúde , Cofator PQQ/farmacologia , Vitaminas/farmacologia , Animais , Dieta , Humanos
3.
J Cell Immunol ; 2(6): 315-325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426540

RESUMO

Pediatric nonalcoholic fatty liver disease (NAFLD) affects 1 in 10 children in the US, increases risk of cirrhosis and transplantation in early adulthood, and shortens lifespan, even after transplantation. Exposure to maternal obesity and/or a diet high in fat, sugar and cholesterol is strongly associated with development of NAFLD in offspring. However, mechanisms by which "priming" of the immune system in early life increases susceptibility to NAFLD are poorly understood. Recent studies have focused on the role "non-reparative" macrophages play in accelerating inflammatory signals promoting fibrogenesis. In this Commentary, we review evidence that the pioneering gut bacteria colonizing the infant intestinal tract remodel the naïve immune system in the offspring. Epigenetic changes in hematopoietic stem and progenitor cells, induced by exposure to an obesogenic diet in utero, may skew lineage commitment of myeloid cells during gestation. Further, microbial dysbiosis in neonatal life contributes to training innate immune cell responsiveness in the gut, bone marrow, and liver, leading to developmental programming of pediatric NAFLD. Comprehensive understanding of how different gut bacteria and their byproducts shape development of the early innate immune system and microbiome will uncover early interventions to prevent NAFLD pathophysiology.

4.
Methods Mol Biol ; 1735: 251-266, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29380318

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is currently the most common cause of chronic liver disease worldwide and is present in a third of the general population and the majority of individuals with obesity and type 2 diabetes. Importantly, NAFLD can progress to severe nonalcoholic steatohepatitis (NASH), associated with liver failure and hepatocellular carcinoma. Recent research efforts have extensively focused on identifying factors contributing to the additional "hit" required to promote NALFD disease progression. The maternal diet, and in particular a high-fat diet (HFD), may be one such hit "priming" the development of severe fatty liver disease, a notion supported by the increasing incidence of NAFLD among children and adolescents in Westernized countries. In recent years, a plethora of key studies have used murine models of maternal obesity to identify fundamental mechanisms such as lipogenesis, mitochondrial function, inflammation, and fibrosis that may underlie the developmental priming of NAFLD. In this chapter, we will address key considerations for constructing experimental models and both conventional and advanced methods of quantifying NAFLD disease status.


Assuntos
Modelos Animais de Doenças , Suscetibilidade a Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Animais , Biópsia , Dieta Hiperlipídica , Fígado Gorduroso/diagnóstico , Feminino , Imuno-Histoquímica , Exposição Materna , Camundongos , Obesidade/complicações , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal
5.
Int J Mol Sci ; 18(10)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28953266

RESUMO

Increased oxidative stress is an unavoidable consequence of exposure to the space environment. Our previous studies showed that mice exposed to space for 13.5 days had decreased glutathione levels, suggesting impairments in oxidative defense. Here we performed unbiased, unsupervised and integrated multi-'omic analyses of metabolomic and transcriptomic datasets from mice flown aboard the Space Shuttle Atlantis. Enrichment analyses of metabolite and gene sets showed significant changes in osmolyte concentrations and pathways related to glycerophospholipid and sphingolipid metabolism, likely consequences of relative dehydration of the spaceflight mice. However, we also found increased enrichment of aminoacyl-tRNA biosynthesis and purine metabolic pathways, concomitant with enrichment of genes associated with autophagy and the ubiquitin-proteasome. When taken together with a downregulation in nuclear factor (erythroid-derived 2)-like 2-mediated signaling, our analyses suggest that decreased hepatic oxidative defense may lead to aberrant tRNA post-translational processing, induction of degradation programs and senescence-associated mitochondrial dysfunction in response to the spaceflight environment.


Assuntos
Autofagia , Fígado/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Voo Espacial , Animais , Betaína/metabolismo , Senescência Celular , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Glutationa/metabolismo , Metabolismo dos Lipídeos , Fígado/patologia , Redes e Vias Metabólicas , Metaboloma , Metabolômica/métodos , Camundongos , Oxirredução , Estresse Oxidativo , Biossíntese de Proteínas , RNA de Transferência/biossíntese , Transcriptoma
6.
FASEB J ; 31(4): 1434-1448, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28007783

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is widespread in adults and children. Early exposure to maternal obesity or Western-style diet (WD) increases steatosis and oxidative stress in fetal liver and is associated with lifetime disease risk in the offspring. Pyrroloquinoline quinone (PQQ) is a natural antioxidant found in soil, enriched in human breast milk, and essential for development in mammals. We investigated whether a supplemental dose of PQQ, provided prenatally in a mouse model of diet-induced obesity during pregnancy, could protect obese offspring from progression of NAFLD. PQQ treatment given pre- and postnatally in WD-fed offspring had no effect on weight gain but increased metabolic flexibility while reducing body fat and liver lipids, compared with untreated obese offspring. Indices of NAFLD, including hepatic ceramide levels, oxidative stress, and expression of proinflammatory genes (Nos2, Nlrp3, Il6, and Ptgs2), were decreased in WD PQQ-fed mice, concomitant with increased expression of fatty acid oxidation genes and decreased Pparg expression. Notably, these changes persisted even after PQQ withdrawal at weaning. Our results suggest that supplementation with PQQ, particularly during pregnancy and lactation, protects offspring from WD-induced developmental programming of hepatic lipotoxicity and may help slow the advancing epidemic of NAFLD in the next generation.-Jonscher, K. R., Stewart, M. S., Alfonso-Garcia, A., DeFelice, B. C., Wang, X. X., Luo, Y., Levi, M., Heerwagen, M. J. R., Janssen, R. C., de la Houssaye, B. A., Wiitala, E., Florey, G., Jonscher, R. L., Potma, E. O., Fiehn, O. Friedman, J. E. Early PQQ supplementation has persistent long-term protective effects on developmental programming of hepatic lipotoxicity and inflammation in obese mice.


Assuntos
Antioxidantes/uso terapêutico , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Obesidade/complicações , Cofator PQQ/uso terapêutico , Efeitos Tardios da Exposição Pré-Natal/prevenção & controle , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Ceramidas/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Feminino , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Estresse Oxidativo , PPAR gama/metabolismo , Cofator PQQ/administração & dosagem , Cofator PQQ/farmacologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/tratamento farmacológico , Efeitos Tardios da Exposição Pré-Natal/etiologia
7.
Nat Rev Gastroenterol Hepatol ; 14(2): 81-96, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27780972

RESUMO

Changes in the maternal environment leading to an altered intrauterine milieu can result in subtle insults to the fetus, promoting increased lifetime disease risk and/or disease acceleration in childhood and later in life. Particularly worrisome is that the prevalence of NAFLD is rapidly increasing among children and adults, and is being diagnosed at increasingly younger ages, pointing towards an early-life origin. A wealth of evidence, in humans and non-human primates, suggests that maternal nutrition affects the placenta and fetal tissues, leading to persistent changes in hepatic metabolism, mitochondrial function, the intestinal microbiota, liver macrophage activation and susceptibility to NASH postnatally. Deleterious exposures in utero include fetal hypoxia, increased nutrient supply, inflammation and altered gut microbiota that might produce metabolic clues, including fatty acids, metabolites, endotoxins, bile acids and cytokines, which prime the infant liver for NAFLD in a persistent manner and increase susceptibility to NASH. Mechanistic links to early disease pathways might involve shifts in lipid metabolism, mitochondrial dysfunction, pioneering gut microorganisms, macrophage programming and epigenetic changes that alter the liver microenvironment, favouring liver injury. In this Review, we discuss how maternal, fetal, neonatal and infant exposures provide developmental clues and mechanisms to help explain NAFLD acceleration and increased disease prevalence. Mechanisms identified in clinical and preclinical models suggest important opportunities for prevention and intervention that could slow down the growing epidemic of NAFLD in the next generation.


Assuntos
Hepatopatia Gordurosa não Alcoólica/embriologia , Efeitos Tardios da Exposição Pré-Natal , Aleitamento Materno , Epigênese Genética , Feminino , Microbioma Gastrointestinal , Humanos , Recém-Nascido , Fígado/embriologia , Fígado/metabolismo , Macrófagos/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/terapia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/terapia , Fenômenos Fisiológicos da Nutrição Pré-Natal , Fatores de Risco
8.
Mol Cell Proteomics ; 12(10): 2935-51, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23764502

RESUMO

One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.


Assuntos
Glicoproteínas/metabolismo , Calicreínas/metabolismo , Polissacarídeos/metabolismo , Antígeno Prostático Específico/metabolismo , Cromatografia Líquida , Glicosilação , Humanos , Laboratórios , Espectrometria de Massas/métodos , Proteômica/métodos , Reprodutibilidade dos Testes
9.
Aging (Albany NY) ; 3(2): 175-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21386135

RESUMO

Aging is associated with various metabolic disorders that may have their origin in the liver, including non-alcoholic fatty liver disease, obesity, type 2 diabetes mellitus, and atherosclerosis. Although well-characterized in models of caloric restriction, relatively little is known about the role of sirtuins and acetylation under conditions of caloric excess. Sirtuins are NAD (+)-dependent protein deacetylases that mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized within the mitochondrial matrix, where it regulates acetylation levels of a diverse set of metabolic enzymes. When normal mice are fed a high fat diet they demonstrate reduced SIRT3 activity, impaired mitochondrial function, and hyperacetylation of a diverse set of proteins in their livers. Furthermore, SIRT3 knockout mice have signs of accelerated aging and cancer. Understanding SIRT3?s biochemical function and regulation in the liver under conditions of caloric excess may potentially increase our understanding of the normal aging process and diseases associated with aging, such as diabetes, fatty liver disease, or cancer.


Assuntos
Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Mitocôndrias/metabolismo , Obesidade/patologia , Obesidade/fisiopatologia , Sirtuína 3/metabolismo , Envelhecimento/fisiologia , Animais , Restrição Calórica , Fígado Gorduroso/patologia , Fígado/metabolismo , Fígado/patologia , Camundongos , NAD/metabolismo , Fenótipo
10.
Mol Cell Biol ; 28(16): 5014-26, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18559423

RESUMO

Although the best-defined function of type II major histocompatibility complex (MHC-II) is presentation of antigenic peptides to T lymphocytes, these molecules can also transduce signals leading alternatively to cell activation or apoptotic death. MHC-II is a heterodimer of two transmembrane proteins, each containing a short cytoplasmic tail that is dispensable for transduction of death signals. This suggests the function of an undefined MHC-II-associated transducer in signaling the death response. Here we describe a novel plasma membrane tetraspanner (MPYS) that is associated with MHC-II and mediates its transduction of death signals. MPYS is unusual among tetraspanners in containing an extended C-terminal cytoplasmic tail (approximately 140 amino acids) with multiple embedded signaling motifs. MPYS is tyrosine phosphorylated upon MHC-II aggregation and associates with inositol lipid and tyrosine phosphatases. Finally, MHC class II-mediated cell death signaling requires MPYS-dependent activation of the extracellular signal-regulated kinase signaling pathway.


Assuntos
Apoptose , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/farmacologia , Apoptose/efeitos dos fármacos , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Cromatografia Líquida , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Linfoma/enzimologia , Linfoma/patologia , Espectrometria de Massas , Proteínas de Membrana/química , Camundongos , Dados de Sequência Molecular , Nanotecnologia , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases da Família src/metabolismo
11.
Proteomics ; 7(14): 2469-78, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17623304

RESUMO

We studied the lung proteome changes in two widely used models of pulmonary arterial hypertension (PAH): monocrotaline (MCT) injection and chronic hypoxia (CH); untreated rats were used as controls (n = 6/group). After 28 days, invasive right ventricular systolic pressure (RVSP) was measured. Lungs were immunostained for alpha-smooth muscle actin (alphaSMA). 2-DE (n = 4/group) followed by nano-LC-MS/MS was applied for protein identification. Western blotting was used additionally if possible. RVSP was significantly increased in MCT- and CH-rats (MCT 62.5 +/- 4.4 mmHg, CH 62.2 +/- 4.1 mmHg, control 25.0 +/- 1.7 mmHg, p<0.001). This was associated with an increase of alphaSMA positive vessels. In both groups, there was a significantly increased expression of proteins associated with the contractile apparatus (diphosphoHsp27 (p<0.001), Septin2 (p<0.001), F-actin capping protein (p<0.01), and tropomyosin beta (p<0.02)). In CH, proteins of the nitric oxide (Hsc70; p = 0.002), carbon monoxide (biliverdin reductase; p = 0.005), and vascular endothelial growth factor (VEGF) pathway (annexin 3; p<0.001) were significantly increased. In MCT, proteins involved in serotonin synthesis (14-3-3; p = 0.02), the enhanced unfolded protein response (ERp57; p = 0.02), and intracellular chloride channels (CLIC 1; p = 0.002) were significantly elevated. Therefore, MCT- and CH-induced vasoconstriction and remodeling seemed to be mediated via different signaling pathways. These differences should be considered in future studies using either PAH model.


Assuntos
Modelos Animais de Doenças , Hipertensão/metabolismo , Pulmão/metabolismo , Proteoma/metabolismo , Artéria Pulmonar/metabolismo , Animais , Doença Crônica , Eletroforese em Gel Bidimensional , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/patologia , Hipertensão/fisiopatologia , Hipóxia/metabolismo , Hipóxia/patologia , Pulmão/fisiopatologia , Masculino , Monocrotalina/farmacologia , Proteínas de Neoplasias/metabolismo , Fosforilação , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ratos , Ratos Sprague-Dawley
12.
J Biol Chem ; 282(27): 19666-75, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17491020

RESUMO

Cigarette smoke is a potent inhibitor of pulmonary T cell responses, resulting in decreased immune surveillance and an increased incidence of respiratory tract infections. The alpha,beta-unsaturated aldehydes in cigarette smoke (acrolein and crotonaldehyde) inhibited production of interleukin-2 (IL-2), IL-10, granulocyte-macrophage colony-stimulating factor, interferon-gamma, and tumor necrosis factor-alpha by human T cells but did not inhibit production of IL-8. The saturated aldehydes (acetaldehyde, propionaldehyde, and butyraldehyde) in cigarette smoke were inactive. Acrolein inhibited induction of NF-kappaB DNA binding activity after mitogenic stimulation of T cells but had no effect on induction of NFAT or AP-1. Acrolein inhibited NF-kappaB1 (p50) binding to the IL-2 promoter in a chromatin immunoprecipitation assay by >99%. Using purified recombinant p50 in an electrophoretic mobility shift assay, we demonstrated that acrolein was 2000-fold more potent than crotonaldehyde in blocking DNA binding to an NF-kappaB consensus sequence. Matrix-assisted laser desorption/ionization time-of-flight and tandem mass spectrometry demonstrated that acrolein alkylated two amino acids (Cys-61 and Arg-307) in the DNA binding domain. Crotonaldehyde reacted with Cys-61, but not Arg-307, whereas the saturated aldehydes in cigarette smoke did not react with p50. These experiments demonstrate that aldehydes in cigarette smoke can regulate gene expression by direct modification of a transcription factor.


Assuntos
Acroleína/farmacologia , DNA/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Subunidade p50 de NF-kappa B/metabolismo , Linfócitos T/metabolismo , Aldeídos/farmacologia , Arginina/imunologia , Arginina/metabolismo , Células Cultivadas , Cisteína/imunologia , Cisteína/metabolismo , Citocinas/biossíntese , Citocinas/imunologia , DNA/imunologia , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Subunidade p50 de NF-kappa B/imunologia , Fatores de Transcrição NFATC/imunologia , Fatores de Transcrição NFATC/metabolismo , Ligação Proteica , Infecções Respiratórias/imunologia , Infecções Respiratórias/metabolismo , Fumaça/efeitos adversos , Linfócitos T/imunologia , Nicotiana/efeitos adversos , Fator de Transcrição AP-1/imunologia , Fator de Transcrição AP-1/metabolismo
13.
Anal Chem ; 76(13): 3556-68, 2004 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15228325

RESUMO

Identifying proteins in cell extracts by shotgun proteomics involves digesting the proteins, sequencing the resulting peptides by data-dependent mass spectrometry (MS/MS), and searching protein databases to identify the proteins from which the peptides are derived. Manual analysis and direct spectral comparison reveal that scores from two commonly used search programs (Sequest and Mascot) validate less than half of potentially identifiable MS/MS spectra (class positive) from shotgun analyses of the human erythroleukemia K562 cell line. Here we demonstrate increased sensitivity and accuracy using a focused search strategy along with a peptide sequence validation script that does not rely exclusively on XCorr or Mowse scores generated by Sequest or Mascot, but uses consensus between the search programs, along with chemical properties and scores describing the nature of the fragmentation spectrum (ion score and RSP). The approach yielded 4.2% false positive and 8% false negative frequencies in peptide assignments. The protein profile is then assembled from peptide assignments using a novel peptide-centric protein nomenclature that more accurately reports protein variants that contain identical peptide sequences. An Isoform Resolver algorithm ensures that the protein count is not inflated by variants in the protein database, eliminating approximately 25% of redundant proteins. Analysis of soluble proteins from a human K562 cells identified 5130 unique proteins, with approximately 100 false positive protein assignments.


Assuntos
Proteínas/química , Proteômica/métodos , Linhagem Celular Tumoral , Humanos , Células K562 , Espectrometria de Massas/métodos , Peptídeos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA