Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Immunol ; 8(85): eadd1591, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506196

RESUMO

Immune checkpoint inhibitor (ICI) therapies used to treat cancer, such as anti-PD-1 antibodies, can induce autoimmune conditions in some individuals. The T cell mechanisms mediating such iatrogenic autoimmunity and their overlap with spontaneous autoimmune diseases remain unclear. Here, we compared T cells from the joints of 20 patients with an inflammatory arthritis induced by ICI therapy (ICI-arthritis) with two archetypal autoimmune arthritides, rheumatoid arthritis (RA) and psoriatic arthritis (PsA). Single-cell transcriptomic and antigen receptor repertoire analyses highlighted clonal expansion of an activated effector CD8 T cell population in the joints and blood of patients with ICI-arthritis. These cells were identified as CD38hiCD127- CD8 T cells and were uniquely enriched in ICI-arthritis joints compared with RA and PsA and also displayed an elevated interferon signature. In vitro, type I interferon induced CD8 T cells to acquire the ICI-associated CD38hi phenotype and enhanced cytotoxic function. In a cohort of patients with advanced melanoma, ICI therapy markedly expanded circulating CD38hiCD127- T cells, which were frequently bound by the therapeutic anti-PD-1 drug. In patients with ICI-arthritis, drug-bound CD8 T cells in circulation showed marked clonal overlap with drug-bound CD8 T cells from synovial fluid. These results suggest that ICI therapy directly targets CD8 T cells in patients who develop ICI-arthritis and induces an autoimmune pathology that is distinct from prototypical spontaneous autoimmune arthritides.


Assuntos
Artrite Psoriásica , Artrite Reumatoide , Linfócitos T CD8-Positivos , Humanos , Artrite Psoriásica/metabolismo , Líquido Sinovial/metabolismo , Linfócitos T Citotóxicos/metabolismo
2.
Sci Transl Med ; 14(649): eabo0686, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704599

RESUMO

T cell-derived pro-inflammatory cytokines are a major driver of rheumatoid arthritis (RA) pathogenesis. Although these cytokines have traditionally been attributed to CD4 T cells, we have found that CD8 T cells are notably abundant in synovium and make more interferon (IFN)-γ and nearly as much tumor necrosis factor (TNF) as their CD4 T cell counterparts. Furthermore, using unbiased high-dimensional single-cell RNA-seq and flow cytometric data, we found that the vast majority of synovial tissue and synovial fluid CD8 T cells belong to an effector CD8 T cell population characterized by high expression of granzyme K (GzmK) and low expression of granzyme B (GzmB) and perforin. Functional experiments demonstrate that these GzmK+ GzmB+ CD8 T cells are major cytokine producers with low cytotoxic potential. Using T cell receptor repertoire data, we found that CD8 GzmK+ GzmB+ T cells are clonally expanded in synovial tissues and maintain their granzyme expression and overall cell state in blood, suggesting that they are enriched in tissue but also circulate. Using GzmK and GzmB signatures, we found that GzmK-expressing CD8 T cells were also the major CD8 T cell population in the gut, kidney, and coronavirus disease 2019 (COVID-19) bronchoalveolar lavage fluid, suggesting that they form a core population of tissue-associated T cells across diseases and human tissues. We term this population tissue-enriched expressing GzmK or TteK CD8 cells. Armed to produce cytokines in response to both antigen-dependent and antigen-independent stimuli, CD8 TteK cells have the potential to drive inflammation.


Assuntos
COVID-19 , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Granzimas/metabolismo , Humanos
3.
Sci Immunol ; 7(68): eabf2846, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35148199

RESUMO

Macrophages regulate protective immune responses to infectious microbes, but aberrant macrophage activation frequently drives pathological inflammation. To identify regulators of vigorous macrophage activation, we analyzed RNA-seq data from synovial macrophages and identified SLAMF7 as a receptor associated with a superactivated macrophage state in rheumatoid arthritis. We implicated IFN-γ as a key regulator of SLAMF7 expression and engaging SLAMF7 drove a strong wave of inflammatory cytokine expression. Induction of TNF-α after SLAMF7 engagement amplified inflammation through an autocrine signaling loop. We observed SLAMF7-induced gene programs not only in macrophages from rheumatoid arthritis patients but also in gut macrophages from patients with active Crohn's disease and in lung macrophages from patients with severe COVID-19. This suggests a central role for SLAMF7 in macrophage superactivation with broad implications in human disease pathology.


Assuntos
Inflamação/imunologia , Ativação de Macrófagos/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Transcriptoma/imunologia , Doença Aguda , Adulto , Artrite Reumatoide/genética , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , COVID-19/genética , COVID-19/imunologia , COVID-19/metabolismo , COVID-19/virologia , Células Cultivadas , Doença Crônica , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Feminino , Humanos , Inflamação/genética , Inflamação/metabolismo , Ativação de Macrófagos/genética , RNA-Seq/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Análise de Célula Única/métodos , Membrana Sinovial/imunologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Transcriptoma/genética
4.
Nat Immunol ; 20(7): 902-914, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209404

RESUMO

Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.


Assuntos
Rim/imunologia , Nefrite Lúpica/imunologia , Biomarcadores , Biópsia , Análise por Conglomerados , Biologia Computacional/métodos , Células Epiteliais/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Interferons/metabolismo , Rim/metabolismo , Rim/patologia , Leucócitos/imunologia , Leucócitos/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Nefrite Lúpica/patologia , Linfócitos/imunologia , Linfócitos/metabolismo , Anotação de Sequência Molecular , Células Mieloides/imunologia , Células Mieloides/metabolismo , Análise de Célula Única , Transcriptoma
5.
Proc Natl Acad Sci U S A ; 110(45): E4232-7, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24145414

RESUMO

Mouse natural killer (NK) cells acquire effector function by an education process termed "licensing" mediated by inhibitory Ly49 receptors which recognize self-MHC class I. Ly49 receptors can bind to MHC class I on targets (in trans) and also to MHC class I on the NK-cell surface (in cis). Which of these interactions regulates NK-cell licensing is not yet clear. Moreover, there are no clear phenotypic differences between licensed and unlicensed NK cells, perhaps because of the previously limited ability to study NK cells with synchronized licensing. Here, we produced MHC class I-deficient mice with inducible MHC class I consisting of a single-chain trimer (SCT), ovalbumin peptide-ß2 microgloblin-H2K(b) (SCT-K(b)). Only NK cells with a Ly49 receptor with specificity for SCT-K(b) were licensed after MHC class I induction. NK cells were localized consistently in red pulp of the spleen during induced NK-cell licensing, and there were no differences in maturation or activation markers on recently licensed NK cells. Although MHC class I-deficient NK cells were licensed in hosts following SCT-K(b) induction, NK cells were not licensed after induced SCT-K(b) expression on NK cells themselves in MHC class I-deficient hosts. Furthermore, hematopoietic cells with induced SCT-K(b) licensed NK cells more efficiently than stromal cells. These data indicate that trans interaction with MHC class I on hematopoietic cells regulates NK-cell licensing, which is not associated with other obvious phenotypic changes.


Assuntos
Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Células Matadoras Naturais/metabolismo , Transferência Adotiva , Animais , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Imuno-Histoquímica , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Células Matadoras Naturais/imunologia , Baço/metabolismo
6.
Blood ; 121(2): 286-97, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23175687

RESUMO

Natural killer (NK) cells have important functions in cancer immunosurveillance, BM allograft rejection, fighting infections, tissue homeostasis, and reproduction. NK cell-based therapies are promising treatments for blood cancers. Overcoming their currently limited efficacy requires a better understanding of the molecular mechanisms controlling NK cell development and dampening their effector functions. NK cells recognize the loss of self-antigens or up-regulation of stress-induced ligands on pathogen-infected or tumor cells through invariant NK cell receptors (NKRs), and then kill such stressed cells. Two second-messenger pathways downstream of NKRs are required for NK cell maturation and effector responses: PIP(3) generation by PI3K and generation of diacylglycerol and IP(3) by phospholipase-Cγ (PLCγ). In the present study, we identify a novel role for the phosphorylated IP(3) metabolite inositol (1,3,4,5)tetrakisphosphate (IP(4)) in NK cells. IP(4) promotes NK cell terminal differentiation and acquisition of a mature NKR repertoire. However, in mature NK cells, IP(4) limits NKR-induced IFNγ secretion, granule exocytosis, and target-cell killing, in part by inhibiting the PIP(3) effector-kinase Akt. This identifies IP(4) as an important novel regulator of NK cell development and function and expands our understanding of the therapeutically important mechanisms dampening NK cell responses. Our results further suggest that PI3K regulation by soluble IP(4) is a broadly important signaling paradigm.


Assuntos
Fosfatos de Inositol/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Fosfatidilinositol 3-Quinases/imunologia , Transdução de Sinais/imunologia , Animais , Fosfatos de Inositol/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Receptores Citoplasmáticos e Nucleares/imunologia , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
J Immunol ; 184(7): 3424-32, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20194719

RESUMO

NK cells are innate immune lymphocytes that can react to cells lacking self-MHC class I. However, NK cells that cannot engage self-MHC through an inhibitory receptor are resistant to stimulation through their activation receptors. To become licensed (i.e., functionally competent to be triggered through its activation receptors), an NK cell must engage host MHC class I via a MHC class I-specific inhibitory receptor, such as a member of the murine Ly49 family. To explore potential determinants of NK cell licensing on a single Ly49 receptor, we have investigated the relative licensing impacts of the b, d, k, q, r, and s H2 haplotypes on Ly49A(+) NK cells. The results indicate that licensing is essentially analog but is saturated by moderate-binding MHC class I ligands. Interestingly, licensing exhibited a strong inverse correlation with a measure of cis engagement of Ly49A. Finally, licensing of Ly49A(+) NK cells was found to be less sensitive to MHC class I engagement than Ly49A-mediated effector inhibition, suggesting that licensing establishes a margin of safety against NK cell autoreactivity.


Assuntos
Citotoxicidade Imunológica/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Subfamília A de Receptores Semelhantes a Lectina de Células NK/imunologia , Alelos , Animais , Separação Celular , Citometria de Fluxo , Haplótipos , Antígenos de Histocompatibilidade Classe I/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Transgênicos
8.
Adv Immunol ; 101: 27-79, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19231592

RESUMO

Armed with potent cytotoxic and immunostimulatory effector functions, natural killer (NK) cells have the potential to cause significant damage to normal self cells unless controlled by self-tolerance mechanisms. NK cells identify and attack target cells based on integration of signals from activation and inhibitory receptors, whose ligands exhibit complex expression and/or binding patterns. Preservation of NK cell self-tolerance must therefore go beyond mere engagement of inhibitory receptors during effector functions. Herein, we review recent work that has uncovered a number of mechanisms to ensure self-tolerance of NK cells. For example, licensing of NK cells allows only NK cells that can engage self-MHC to become functionally competent, or licensed. The molecular mechanism of this phenomenon appears to require signaling by receptors that were originally identified in effector inhibition. However, the nature of the signaling event has not yet been defined, but new interpretations of several published experiments provide valuable clues. In addition, several other cell-intrinsic and -extrinsic mechanisms of NK cell tolerance are discussed, including activation receptor cooperation and synergy, cytokine stimulation, and the opposing roles of accessory and regulatory cells. Finally, NK cell tolerance is discussed as it relates to the clinic, such as KIR-HLA disease associations, tumor immunotherapy, and fetal tolerance.


Assuntos
Tolerância Imunológica/imunologia , Células Matadoras Naturais/imunologia , Receptores Semelhantes a Lectina de Células NK/imunologia , Receptores de Células Matadoras Naturais/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia , Células Matadoras Naturais/metabolismo , Complexo Principal de Histocompatibilidade/imunologia , Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptores de Células Matadoras Naturais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA