Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Bot ; 110(7): e16189, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37210744

RESUMO

PREMISE: Recently formed allopolyploids Tragopogon mirus and T. miscellus and their diploid parental species, T. dubius, T. porrifolius, and T. pratensis, offer a rare opportunity to study the earliest stages of allopolyploidy. The allopolyploid species have also been resynthesized, allowing comparisons between the youngest possible allopolyploid lineages and their natural, established counterparts. For the first time, we compared phenotypic traits on a large scale in Tragopogon diploids, natural allopolyploids, and three generations of synthetic allopolyploids. METHODS: Our large common-garden experiment measured traits in growth, development, physiology, and reproductive fitness. We analyzed trait differences between allopolyploids and their parental species, and between synthetic and natural allopolyploids. RESULTS: As in many polyploids, the allopolyploid species had some larger physical traits and a higher capacity for photosynthesis than diploid species. Reproductive fitness traits were variable and inconsistent. Allopolyploids had intermediate phenotypes compared to their diploid parents in several traits, but patterns of variation often varied between allopolyploid complexes. Resynthesized and natural allopolyploid lines generally showed minor to nonexistent trait differences. CONCLUSIONS: In Tragopogon, allopolyploidy results in some typical phenotypic changes, including gigas effects and increased photosynthetic capacity. Being polyploid did not produce a significant reproductive advantage. Comparisons between natural and synthetic T. mirus and T. miscellus are consistent with very limited, idiosyncratic phenotypic evolution following allopolyploidization.


Assuntos
Tragopogon , Tragopogon/genética , Diploide , Poliploidia , América do Norte , Genoma de Planta
2.
Am J Bot ; 99(2): 372-82, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22268220

RESUMO

PREMISE OF THE STUDY: Hybridization and polyploidization (allopolyploidy) are ubiquitous in the evolution of plants, but tracing the origins and subsequent evolution of the constituent genomes of allopolyploids has been challenging. Genome doubling greatly complicates genetic analyses, and this has long hindered investigation in that most allopolyploid species are "nonmodel" organisms. However, recent advances in sequencing and genomics technologies now provide unprecedented opportunities to analyze numerous genetic markers in multiple individuals in any organism. METHODS: Here we review the application of next-generation sequencing technologies to the study of three aspects of allopolyploid genome evolution: duplicated gene loss and expression in two recently formed Tragopogon allopolyploids, intergenomic interactions and chromosomal evolution in Tragopogon miscellus, and repetitive DNA evolution in Nicotiana allopolyploids. KEY RESULTS: For the first time, we can explore on a genomic scale the evolutionary processes that are ongoing in natural allopolyploids and not be restricted to well-studied crops and genetic models. CONCLUSIONS: These approaches can be easily and inexpensively applied to many other plant species-making any evolutionarily provocative system a new "model" system.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Poliploidia , Alelos , Cromossomos de Plantas/genética , DNA de Plantas/genética , Duplicação Gênica , Marcadores Genéticos , Sequências Repetitivas de Ácido Nucleico , Nicotiana/genética , Tragopogon/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA