Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Pharm Biopharm ; 199: 114306, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679213

RESUMO

In the context of neglected diseases, tegumentary leishmaniasis (TL) presents an emerging and re-emerging character in the national territory and in the world. The treatment of TL has limitations, such as intravenous administration route, high toxicity, and high treatment costs. Thus, several researchers work on new therapeutic strategies to improve the effectiveness of the treatment of leishmaniasis. In this light, the present study used a topical formulation, containing 8-hydroquinoline (8-HQN), for the treatment of Balb/c mice infected with L. amazonensis. After the treatment, the mean diameter of the lesion was measured, as well as the parasite load in organs and immunological parameters associated with the treatment. The results showed that the animals treated with 8-HQN 5%, when compared to controls, showed a reduction in the mean diameter of the lesion and in the parasite load. The animals treated with the ointment showed a type 1 cellular immune response profile associated with the production of cytokines such as INF-γ and TNF-α. In addition, the treatment did not demonstrate toxicity to mice. Therefore, the topical formulation containing 8-HQN 5% is a promising candidate in the topical treatment and could be considered, in the future, as an alternative for the treatment of TL.


Assuntos
Leishmaniose Cutânea , Camundongos Endogâmicos BALB C , Oxiquinolina , Carga Parasitária , Animais , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Cutânea/parasitologia , Camundongos , Oxiquinolina/administração & dosagem , Oxiquinolina/química , Feminino , Administração Tópica , Antiprotozoários/administração & dosagem , Antiprotozoários/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Citocinas/metabolismo , Pomadas , Interferon gama , Modelos Animais de Doenças
2.
Molecules ; 25(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096707

RESUMO

Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3ß-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3ß-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.


Assuntos
Antivirais/farmacologia , Cardenolídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Antivirais/química , Cardenolídeos/química , Humanos , Conformação Molecular , RNA Polimerase Dependente de RNA/metabolismo , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA