Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982191

RESUMO

Skeletal muscle regeneration involves a signaling network that regulates the proliferation, differentiation, and fusion of muscle precursor cells to injured myofibers. IRE1α, one of the arms of the unfolded protein response, regulates cellular proteostasis in response to ER stress. Here, we demonstrate that inducible deletion of IRE1α in satellite cells of mice impairs skeletal muscle regeneration through inhibiting myoblast fusion. Knockdown of IRE1α or its downstream target, X-box protein 1 (XBP1), also inhibits myoblast fusion during myogenesis. Transcriptome analysis revealed that knockdown of IRE1α or XBP1 dysregulates the gene expression of molecules involved in myoblast fusion. The IRE1α-XBP1 axis mediates the gene expression of multiple profusion molecules, including myomaker (Mymk). Spliced XBP1 (sXBP1) transcription factor binds to the promoter of Mymk gene during myogenesis. Overexpression of myomaker in IRE1α-knockdown cultures rescues fusion defects. Inducible deletion of IRE1α in satellite cells also inhibits myoblast fusion and myofiber hypertrophy in response to functional overload. Collectively, our study demonstrates that IRE1α promotes myoblast fusion through sXBP1-mediated up-regulation of the gene expression of multiple profusion molecules, including myomaker.

2.
Life Sci Alliance ; 6(12)2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813488

RESUMO

Skeletal muscle regeneration involves coordinated activation of an array of signaling pathways. Fibroblast growth factor-inducible 14 (Fn14) is a bona fide receptor for the TWEAK cytokine. Levels of Fn14 are increased in the skeletal muscle of mice after injury. However, the cell-autonomous role of Fn14 in muscle regeneration remains unknown. Here, we demonstrate that global deletion of the Fn14 receptor in mice attenuates muscle regeneration. Conditional ablation of Fn14 in myoblasts but not in differentiated myofibers of mice inhibits skeletal muscle regeneration. Fn14 promotes myoblast fusion without affecting the levels of myogenic regulatory factors in the regenerating muscle. Fn14 deletion in myoblasts hastens initial differentiation but impairs their fusion. The overexpression of Fn14 in myoblasts results in the formation of myotubes having an increased diameter after induction of differentiation. Ablation of Fn14 also reduces the levels of various components of canonical Wnt and calcium signaling both in vitro and in vivo. Forced activation of Wnt signaling rescues fusion defects in Fn14-deficient myoblast cultures. Collectively, our results demonstrate that Fn14-mediated signaling positively regulates myoblast fusion and skeletal muscle regeneration.


Assuntos
Comunicação Celular , Mioblastos , Receptor de TWEAK , Animais , Camundongos , Diferenciação Celular , Desenvolvimento Muscular , Mioblastos/metabolismo , Via de Sinalização Wnt , Receptor de TWEAK/metabolismo
3.
NPJ Vaccines ; 8(1): 125, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596281

RESUMO

One of the most preferable characteristics for a COVID-19 vaccine candidate is the ability to reduce transmission and infection of SARS-CoV-2, in addition to disease prevention. Unlike intramuscular vaccines, intranasal COVID-19 vaccines may offer this by generating mucosal immunity. In this open-label, randomised, multicentre, phase 3 clinical trial (CTRI/2022/02/40065; ClinicalTrials.gov: NCT05522335), healthy adults were randomised to receive two doses, 28 days apart, of either intranasal adenoviral vectored SARS-CoV-2 vaccine (BBV154) or licensed intramuscular vaccine, Covaxin®. Between April 16 and June 4, 2022, we enrolled 3160 subjects of whom, 2971 received 2 doses of BBV154 and 161 received Covaxin. On Day 42, 14 days after the second dose, BBV154 induced significant serum neutralization antibody titers against the ancestral (Wuhan) virus, which met the pre-defined superiority criterion for BBV154 over Covaxin®. Further, both vaccines showed cross protection against Omicron BA.5 variant. Salivary IgA titers were found to be higher in BBV154. In addition, extensive evaluation of T cell immunity revealed comparable responses in both cohorts due to prior infection. However, BBV154 showed significantly more ancestral specific IgA-secreting plasmablasts, post vaccination, whereas Covaxin recipients showed significant Omicron specific IgA-secreting plasmablasts only at day 42. Both vaccines were well tolerated. Overall reported solicited reactions were 6.9% and 25.5% and unsolicited reactions were 1.2% and 3.1% in BBV154 and Covaxin® participants respectively.

4.
Ann Am Thorac Soc ; 20(8): 1144-1155, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36943405

RESUMO

Rationale: Lumacaftor/ivacaftor (LUM/IVA) was shown to be safe and well tolerated in children 2 through 5 years of age with cystic fibrosis (CF) homozygous for F508del-CFTR in a Phase 3 open-label study. Improvements in sweat chloride concentration, markers of pancreatic function, and lung clearance index2.5 (LCI2.5), along with increases in growth parameters, suggested the potential for early disease modification with LUM/IVA treatment. Objective: To further assess the effects of LUM/IVA on CF disease progression in children 2 through 5 years of age using chest magnetic resonance imaging (MRI). Methods: This Phase 2 study had two parts: a 48-week, randomized, double-blind, placebo-controlled treatment period in which children 2 through 5 years of age with CF homozygous for F508del-CFTR received either LUM/IVA or placebo (Part 1) followed by an open-label period in which all children received LUM/IVA for an additional 48 weeks (Part 2). The results from Part 1 are reported. The primary endpoint was absolute change from baseline in chest MRI global score at Week 48. Secondary endpoints included absolute change in LCI2.5 through Week 48 and absolute changes in weight-for-age, stature-for-age, and body mass index-for-age z-scores at Week 48. Additional endpoints included absolute changes in sweat chloride concentration, fecal elastase-1 levels, serum immunoreactive trypsinogen, and fecal calprotectin through Week 48. The primary endpoint was analyzed using Bayesian methods, where the actual Bayesian posterior probability of LUM/IVA being superior to placebo in the chest MRI global score at Week 48 was calculated using a vague normal prior distribution; secondary and additional endpoints were analyzed using descriptive summary statistics. Results: Fifty-one children were enrolled and received LUM/IVA (n = 35) or placebo (n = 16). For the change in chest MRI global score at Week 48, the Bayesian posterior probability of LUM/IVA being better than placebo (treatment difference, <0; higher score indicates greater abnormality) was 76%; the mean treatment difference was -1.5 (95% credible interval, -5.5 to 2.6). Treatment with LUM/IVA also led to within-group numerical improvements in LCI2.5, growth parameters, and biomarkers of pancreatic function as well as greater decreases in sweat chloride concentration compared with placebo from baseline through Week 48. Safety data were consistent with the established safety profile of LUM/IVA. Conclusions: This placebo-controlled study suggests the potential for early disease modification with LUM/IVA treatment, including that assessed by chest MRI, in children as young as 2 years of age. Clinical trial registered with www.clinicaltrials.gov (NCT03625466).


Assuntos
Fibrose Cística , Humanos , Criança , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Cloretos , Teorema de Bayes , Aminofenóis/efeitos adversos , Progressão da Doença , Mutação
5.
FASEB J ; 36(12): e22666, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36412933

RESUMO

Skeletal muscle atrophy is a prevalent complication in multiple chronic diseases and disuse conditions. Fibroblast growth factor-inducible 14 (Fn14) is a member of the TNF receptor superfamily and a bona fide receptor of the TWEAK cytokine. Accumulating evidence suggests that Fn14 levels are increased in catabolic conditions as well as during exercise. However, the role of Fn14 in the regulation of skeletal muscle mass and function remains poorly understood. In this study, through the generation of novel skeletal muscle-specific Fn14-knockout mice, we have investigated the muscle role of Fn14 in the regulation of exercise capacity and denervation-induced muscle atrophy. Our results demonstrate that there was no difference in skeletal muscle mass between control and muscle-specific Fn14-knockout mice. Nevertheless, the deletion of Fn14 in skeletal muscle significantly improved exercise capacity and resistance to fatigue. This effect of Fn14 deletion is associated with an increased proportion of oxidative myofibers and higher capillaries number per myofiber in skeletal muscle. Furthermore, our results demonstrate that targeted deletion of Fn14 inhibits denervation-induced muscle atrophy in adult mice. Deletion of Fn14 reduced the expression of components of the ubiquitin-proteasome system and non-canonical NF-kappa B signaling in denervated skeletal muscle, as well as increased the phosphorylation of Akt kinase and FoxO3a transcription factor. Collectively, our results demonstrate that targeted inhibition of Fn14 improves exercise tolerance and inhibits denervation-induced muscle atrophy in adult mice.


Assuntos
Tolerância ao Exercício , Fatores de Necrose Tumoral , Camundongos , Animais , Receptor de TWEAK/genética , Fatores de Necrose Tumoral/metabolismo , Atrofia Muscular/metabolismo , Camundongos Knockout
6.
J Med Imaging (Bellingham) ; 8(4): 044502, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34423071

RESUMO

Purpose: Explainable AI aims to build systems that not only give high performance but also are able to provide insights that drive the decision making. However, deriving this explanation is often dependent on fully annotated (class label and local annotation) data, which are not readily available in the medical domain. Approach: This paper addresses the above-mentioned aspects and presents an innovative approach to classifying a lung nodule in a CT volume as malignant or benign, and generating a morphologically meaningful explanation for the decision in the form of attributes such as nodule margin, sphericity, and spiculation. A deep learning architecture that is trained using a multi-phase training regime is proposed. The nodule class label (benign/malignant) is learned with full supervision and is guided by semantic attributes that are learned in a weakly supervised manner. Results: Results of an extensive evaluation of the proposed system on the LIDC-IDRI dataset show good performance compared with state-of-the-art, fully supervised methods. The proposed model is able to label nodules (after full supervision) with an accuracy of 89.1% and an area under curve of 0.91 and to provide eight attributes scores as an explanation, which is learned from a much smaller training set. The proposed system's potential to be integrated with a sub-optimal nodule detection system was also tested, and our system handled 95% of false positive or random regions in the input well by labeling them as benign, which underscores its robustness. Conclusions: The proposed approach offers a way to address computer-aided diagnosis system design under the constraint of sparse availability of fully annotated images.

7.
ChemMedChem ; 14(16): 1493-1502, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31273951

RESUMO

Autotaxin (ATX) is a secreted enzyme with tissue levels associated with tissue injury, which increase during wound healing and chronic fibrotic diseases. We selected [18 F](R,E)-3-(4-chloro-2-((5-methyl-2H-tetrazol-2-yl)methyl)phenyl)-1-(4-((5-(2-fluoroethoxy)pyridin-2-yl)methyl)-2-methylpiperazin-1-yl)prop-2-en-1-one ([18 F]PRIMATX, [18 F]2), a tracer for positron emission tomography, to image ATX expression in vivo. It successfully differentiates expression levels in lung tissue samples from idiopathic pulmonary fibrosis patients, and allows the detection of ATX-expressing tumors in living mice, confirming its potential for development as a clinical imaging agent.


Assuntos
Pulmão/metabolismo , Neoplasias/diagnóstico por imagem , Diester Fosfórico Hidrolases/análise , Piperazinas/farmacologia , Compostos Radiofarmacêuticos/farmacologia , Tetrazóis/farmacologia , Animais , Radioisótopos de Flúor/química , Humanos , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Piperazinas/síntese química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Tetrazóis/síntese química
8.
Blood ; 130(21): 2307-2316, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-28972011

RESUMO

Pathogenic gain-of-function variants in the genes encoding phosphoinositide 3-kinase δ (PI3Kδ) lead to accumulation of transitional B cells and senescent T cells, lymphadenopathy, and immune deficiency (activated PI3Kδ syndrome [APDS]). Knowing the genetic etiology of APDS afforded us the opportunity to explore PI3Kδ inhibition as a precision-medicine therapy. Here, we report in vitro and in vivo effects of inhibiting PI3Kδ in APDS. Treatment with leniolisib (CDZ173), a selective PI3Kδ inhibitor, caused dose-dependent suppression of PI3Kδ pathway hyperactivation (measured as phosphorylation of AKT/S6) in cell lines ectopically expressing APDS-causative p110δ variants and in T-cell blasts derived from patients. A clinical trial with 6 APDS patients was conducted as a 12-week, open-label, multisite, within-subject, dose-escalation study of oral leniolisib to assess safety, pharmacokinetics, and effects on lymphoproliferation and immune dysregulation. Oral leniolisib led to a dose-dependent reduction in PI3K/AKT pathway activity assessed ex vivo and improved immune dysregulation. We observed normalization of circulating transitional and naive B cells, reduction in PD-1+CD4+ and senescent CD57+CD4- T cells, and decreases in elevated serum immunoglobulin M and inflammatory markers including interferon γ, tumor necrosis factor, CXCL13, and CXCL10 with leniolisib therapy. After 12 weeks of treatment, all patients showed amelioration of lymphoproliferation with lymph node sizes and spleen volumes reduced by 39% (mean; range, 26%-57%) and 40% (mean; range, 13%-65%), respectively. Thus, leniolisib was well tolerated and improved laboratory and clinical parameters in APDS, supporting the specific inhibition of PI3Kδ as a promising new targeted therapy in APDS and other diseases characterized by overactivation of the PI3Kδ pathway. This trial was registered at www.clinicaltrials.gov as #NCT02435173.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Síndromes de Imunodeficiência/tratamento farmacológico , Síndromes de Imunodeficiência/enzimologia , Terapia de Alvo Molecular , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Pirimidinas/farmacologia , Animais , Quimiocinas/sangue , Criança , Pré-Escolar , Classe I de Fosfatidilinositol 3-Quinases/imunologia , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Demografia , Relação Dose-Resposta a Droga , Feminino , Humanos , Imunoglobulina M/sangue , Síndromes de Imunodeficiência/imunologia , Síndromes de Imunodeficiência/patologia , Lactente , Linfonodos/efeitos dos fármacos , Linfonodos/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Mutação/genética , Tamanho do Órgão , Fenótipo , Doenças da Imunodeficiência Primária , Piridinas/farmacocinética , Pirimidinas/farmacocinética , Ratos , Baço/efeitos dos fármacos , Baço/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA