Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(7): 4643-4656, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38349395

RESUMO

Chronic inflammation is defined by an activated microglial state linked to all neurological disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (a motor neuron disease that affects the brain and spinal cord). P2X7 receptors (P2X7R) are ATP-activated ion-gated channels present on microglial surfaces. Prolonged ATP release under pathological settings results in sustained P2X7R activation, which leads to inflammasome development and cytokine release. P2X7R and its enabling roles have recently been linked to neurodegenerative diseases, making it a potential research subject. This research provides an overview of current patents for chemicals, biologics, and medicinal applications. The World Intellectual Property Organization (WIPO), European Patent Office (EPO, Espacenet), and the United States Patent and Trademark Office (USPTO) databases were searched for patents using the keywords "P2X7R and Neuroinflammation." During the study period from 2015 to 2021, 103 patents were examined. The countries that protected these innovations were the United States, PCT (Patent Cooperation Treaty states), Europe, Canada, Australia, and India. Janssen Pharmaceutica NV had the most applications, followed by Acetelion Pharmaceuticals LTD., Renovis Inc., Kelly Michael G, Kincaid Jhon, Merck Patent GMBH, H Lundbeck A/S, and many more. The P2X7R is a possible diagnostic and therapeutic target for cancer, pain disorders, and inflammation. For P2X7 R, several compounds have been discovered and are presently the subject of clinical trial investigations. This study featured patents for P2X7R antagonists, which help treat conditions including neuroinflammation.


Assuntos
Doenças Neuroinflamatórias , Patentes como Assunto , Antagonistas do Receptor Purinérgico P2X , Receptores Purinérgicos P2X7 , Humanos , Receptores Purinérgicos P2X7/metabolismo , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/farmacologia , Animais , Doenças Neuroinflamatórias/tratamento farmacológico
2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 41-57, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37566307

RESUMO

Patients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines' side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma.


Assuntos
Glioblastoma , Glioma , Humanos , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Distribuição Tecidual , Glioma/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico
3.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1311-1326, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37695334

RESUMO

Engineering polymer-based nano-systems have attracted many researchers owing to their unique qualities like shape, size, porosity, mechanical strength, biocompatibility, and biodegradability. Both natural and synthetic polymers can be tuned to get desired surface chemistry and functionalization to improve the efficacy of cancer therapy by promoting targeted delivery to the tumor site. Recent advancements in cancer immunoediting have been able to manage both primary tumor and metastatic lesions via activation of the immune system. The combinations of nano-biotechnology and immunotherapeutic agents have provided positive outcomes by enhancing the host immune response in cancer therapy. The nanoparticles have been functionalized using antibodies, targeted antigens, small molecule ligands, and other novel agents that can interact with biological systems at nanoscale levels. Several polymers, such as polyethylene glycol (PEG), poly(lactic-co-glycolic acid) (PLGA), poly(ε-caprolactone) (PCL), and chitosan, have been approved by the Food and Drug Administration for clinical use in biomedicine. The polymeric nanoformulations such as polymers-antibody/antigen conjugates and polymeric drug conjugates are currently being explored as nanomedicines that can target cancer cells directly or target immune cells to promote anti-cancer immunotherapy. In this review, we focus on scientific developments and advancements on engineered polymeric nano-systems in conjugation with immunotherapeutic agents targeting the tumor microenvironment to improve their efficacy and the safety for better clinical outcomes.


Assuntos
Nanopartículas , Neoplasias , Humanos , Polímeros/química , Polímeros/uso terapêutico , Sistemas de Liberação de Medicamentos , Polietilenoglicóis/química , Neoplasias/tratamento farmacológico , Imunoterapia , Nanopartículas/química , Microambiente Tumoral
4.
Exp Cell Res ; 434(2): 113891, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38104645

RESUMO

MicroRNAs (miRNAs) have emerged as pivotal regulators of gene expression, playing essential roles in diverse cellular processes, including the development and progression of cancer. Among the numerous proteins influenced by miRNAs, the MARCKS/MARCKSL1 protein, a key regulator of cellular cytoskeletal dynamics and membrane-cytosol communication, has garnered significant attention due to its multifaceted involvement in various cancer-related processes, including cell migration, invasion, metastasis, and drug resistance. Motivated by the encouraging early clinical success of peptides targeting MARCKS in several pathological conditions, this review article delves into the intricate interplay between miRNAs and the MARCKS protein in cancer. Herein, we have highlighted the latest findings on specific miRNAs that modulate MARCKS/MARCKSL1 expression, providing a comprehensive overview of their roles in different cancer types. We have underscored the need for in-depth investigations into the therapeutic feasibility of targeting the miRNA-MARCKS axis in cancer, taking cues from the successes witnessed in related fields. Unlocking the full potential of miRNA-mediated MARCKS regulation could pave the way for innovative and effective therapeutic interventions against various cancer types.


Assuntos
MicroRNAs , Neoplasias , Humanos , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase C/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neoplasias/genética , Fosforilação , Proteínas de Ligação a Calmodulina/metabolismo , Proteínas dos Microfilamentos/metabolismo
5.
J Cancer Res Clin Oncol ; 149(19): 17709-17726, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37919474

RESUMO

BACKGROUND: Melittin is a water-soluble cationic peptide derived from bee venom that has been thoroughly studied for the cure of different cancers. However, the unwanted interactions of melittin produce hemolytic and cytotoxic effects that hinder their therapeutic applications. To overcome the shortcomings, numerous research groups have adopted different approaches, including conjugation with tumor-targeting proteins, gene therapy, and encapsulation in nanoparticles, to reduce the non-specific cytotoxic effects and potentiate their anti-cancerous activity. PURPOSE: This article aims to provide mechanistic insights into the chemopreventive activity of melittin and its nanoversion in combination with standard anti-cancer drugs for the treatment of cancer. METHODS: We looked over the pertinent research on melittin's chemopreventive properties in online databases such as PubMed and Scopus. CONCLUSION: In the present article, the anti-cancerous effects of melittin on different cancers have been discussed very nicely, as have their possible mechanisms of action to act against different tumors. Besides, it interacts with different signal molecules that regulate the diverse pathways of cancerous cells, such as cell cycle arrest, apoptosis, metastasis, angiogenesis, and inflammation. We also discussed the recent progress in the synergistic combination of melittin with standard anti-cancer drugs and a nano-formulated version of melittin for targeted delivery to improve its anticancer potential.


Assuntos
Antineoplásicos , Neoplasias , Animais , Meliteno/farmacologia , Meliteno/química , Meliteno/genética , Neoplasias/patologia , Antineoplásicos/uso terapêutico , Técnicas de Cultura de Células , Modelos Animais , Proliferação de Células
6.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005250

RESUMO

Flavopiridol is a flavone synthesized from the natural product rohitukine, which is derived from an Indian medicinal plant, namely Dysoxylum binectariferum Hiern. A deeper understanding of the biological mechanisms by which such molecules act may allow scientists to develop effective therapeutic strategies against a variety of life-threatening diseases, such as cancer, viruses, fungal infections, parasites, and neurodegenerative diseases. Mechanistic insight of flavopiridol reveals its potential for kinase inhibitory activity of CDKs (cyclin-dependent kinases) and other kinases, leading to the inhibition of various processes, including cell cycle progression, apoptosis, tumor proliferation, angiogenesis, tumor metastasis, and the inflammation process. The synthetic derivatives of flavopiridol have overcome a few demerits of its parent compound. Moreover, these derivatives have much improved CDK-inhibitory activity and therapeutic abilities for treating severe human diseases. It appears that flavopiridol has potential as a candidate for the formulation of an integrated strategy to combat and alleviate human diseases. This review article aims to unravel the potential therapeutic effectiveness of flavopiridol and its possible mechanism of action.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Quinases Ciclina-Dependentes , Fosforilação , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Apoptose
7.
Nat Commun ; 14(1): 4253, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474523

RESUMO

Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don't respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/ß2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development.


Assuntos
Melanoma , Linfócitos T , Humanos , Camundongos , Animais , Linfócitos T/patologia , Antígeno-1 Associado à Função Linfocitária , Células Endoteliais/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Melanoma/patologia , Imunoterapia , Microambiente Tumoral
8.
Naunyn Schmiedebergs Arch Pharmacol ; 396(12): 3443-3458, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37490121

RESUMO

One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias , Humanos , Quercetina/farmacologia , Ouro , Antioxidantes/farmacologia , Neoplasias/tratamento farmacológico
9.
Exp Biol Med (Maywood) ; 248(9): 820-828, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37387217

RESUMO

Chinese native medicine Scutellaria baicalensis Georgi, also referred to as Chinese skullcap or Huang-Qin, is frequently used to treat cancer, viral infections, and seizures. This plant's abundance of flavones (wogonoside) and their related aglycones (wogonin) is responsible for many of its pharmacologic effects. A significant ingredient in S. baicalensis that has been the subject of the most research is wogonin. Numerous preclinical investigations revealed that wogonin suppresses tumor growth by cell cycle arrest, stimulating cell death and preventing metastasis. This review focuses on a complete overview of published reports that suggest chemopreventive action of wogonin and the mechanistic insights behind these neoplastic activities. It also emphasizes the synergistic improvements made by wogonin in chemoprevention. The factual data in this mini-review stimulate additional research on chemistry and toxicological profile of wogonin to confirm its safety issues. This review will encourage researchers to generalize the merits of wogonin to be used as potential compound for cancer treatment.


Assuntos
Antineoplásicos Fitogênicos , Medicamentos de Ervas Chinesas , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Antineoplásicos Fitogênicos/farmacologia
10.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2893-2910, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37300702

RESUMO

Genistein, a commonly occurring isoflavone, has recently gained popularity owing to its ever-expanding spectrum of pharmacological benefits. In addition to health benefits such as improved bone health and reduced postmenopausal complications owing to its phytoestrogen properties, it has been widely evaluated for its anti-cancer potential. Several studies have established the potential for its usage in the management of breast, lung, and prostate cancers, and its usage has significantly evolved from early applications in traditional systems of medicine. This review offers an insight into its current status of usage, the chemistry, and pharmacokinetics of the molecule, an exploration of its apoptotic mechanisms in cancer management, and opportunities for synergism to improve therapeutic outcomes. In addition to this, the authors have presented an overview of recent clinical trials, to offer an understanding of contemporary studies and explore prospects for a greater number of focused trials, moving forward. Advancements in the application of nanotechnology as a strategy to improve safety and efficacy have also been highlighted, with a brief discussion of results from safety and toxicology studies.


Assuntos
Isoflavonas , Neoplasias da Próstata , Masculino , Humanos , Genisteína/farmacologia , Genisteína/uso terapêutico , Isoflavonas/farmacologia , Fitoestrógenos/farmacologia , Fitoestrógenos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Apoptose
11.
Microb Pathog ; 176: 106021, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36739922

RESUMO

Mitochondria are the powerhouse of the cell and a critical cell signalling hub that decides the fate of the cell. Mycobacterium tuberculosis (Mtb) being a successful pathogen targets and controls the host mitochondria for pathogenesis. Various effector proteins of Mtb are also known to target host mitochondria which include few proteins of a unique Proline-Glutamate/Proline-Proline-Glutamate (PE/PPE) family exclusively present in pathogenic mycobacteria, but many of them are still uncharacterized. The present study investigates one such late expressing Rv0109 (PE_PGRS1) protein of Mtb. In-silico analysis predicted the presence of mitochondria targeting signal sequences in Rv0109 and its role in regulation of cysteine type endopeptidase (caspase) activity during apoptosis. Recombinant Rv0109 gets localized to mitochondria of THP1 macrophages as shown by confocal microscopy. Rv0109 was observed to induce mitochondrial stress which resulted in mitochondrial membrane depolarization, upregulation of mitochondrial superoxides and release of Cytochrome-C in the cytoplasm through flow cytometry. Depleted intracellular ATP was observed in THP1 macrophages in response to Rv0109. This mitochondrial stress in response to Rv0109 was observed to culminate in increased expression of pro-apoptotic Bax and Bim factors and caspase activation leading to macrophage apoptosis. Since Rv0109 is a late stage specific protein expressed within granuloma; mitochondria mediated apoptosis induced by Rv0109 may be explored for its role in granuloma maintenance and pathogen persistence.


Assuntos
Mycobacterium tuberculosis , Mycobacterium tuberculosis/metabolismo , Apoptose , Caspases/metabolismo , Macrófagos/microbiologia , Mitocôndrias/metabolismo , Glutamatos/metabolismo , Proteínas de Bactérias/metabolismo
12.
Naunyn Schmiedebergs Arch Pharmacol ; 396(5): 865-876, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36773053

RESUMO

In parallel to the continuous rise of new cancer cases all over the world, the interest of scientific community in natural anticancer agents has steadily been increased. In the past decades, numerous phytochemicals have been shown to possess a strong anticancer potential in preclinical conditions. One of such interesting compounds, derived from different plants such as ginkgo, hinoki, and St. John`s wort, is amentoflavone. In this review article, a wide range of anticancer properties of this natural biflavone are described, revealing its ability to suppress the malignant growth and lead tumor cells to apoptotic death, besides impeding also angiogenic and metastatic processes. Therefore, amentoflavone can be considered a potential lead compound for the development of novel anticancer drug candidates, definitely deserving further in vivo studies and also initiation of clinical trials. It is expected that this plant biflavone might be important, either alone or in combination with the current standard chemotherapeutics, in providing some alleviation for the continuous rise of global cancer burden.


Assuntos
Antineoplásicos , Biflavonoides , Biflavonoides/farmacologia , Biflavonoides/uso terapêutico , Biflavonoides/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
Chem Asian J ; 17(21): e202200736, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36065146

RESUMO

This report describes the synthesis of two ruthenium(II) ENE pincer complexes (E = S, C1 and E = Se, C2) by the reaction of bis(2-(phenylchalcogenyl)ethyl)amine (L1, L2) with RuCl2 (PPh3 )3 . The complexes were characterized with the help of 1 H and 13 C{1 H} NMR, FTIR, HRMS, cyclic voltammetry and elemental analysis techniques. The structure and bonding mode of ligand with ruthenium in C2 was established with the help of single crystal X-ray diffraction. The complex showed distorted octahedral geometry with two chlorine atoms trans to each other. The Ru-Se bond distances (Å) are 2.4564(3)-2.4630(3), Ru-N distance is 2.181(2), Ru-P distance is 2.2999(6), and Ru-Cl distances are 2.4078(6)-2.4314(6). The complexes showed good to excellent catalytic activity for the N-alkylation of o-phenylenediamine with benzyl alcohol derivatives to synthesize 1,2-disubstituted benzimidazole derivatives. The complexes were also found to be efficient for aerobic oxidation of benzyl alcohols to corresponding aldehydes which are precursors to the bisimines generated in situ during the synthesis of 1,2-disubstituted benzimidazole derivatives. Complex C2 where selenium is coordinated with ruthenium was found to be more efficient as compared to sulfur coordinated ruthenium complex C1. Since ruthenium complexes are getting increasing attention for developing new anticancer agents, the preliminary studies like binding behavior of both the complexes towards CT-DNA were studied by competitive binding with ethidium bromide (EthBr) using emission spectroscopy. In addition, the interactions of C1-C2 were also studied with bovine serum albumin (BSA) using steady state fluorescence quenching and synchronous fluorescence studies. A good stability of Ru(II) state was observed by cyclic voltammetric studies of C1-C2. Overall these molecules are good examples of bio-organometallic systems for catalytic and biological applications.


Assuntos
Rutênio , Rutênio/química , Cristalografia por Raios X , DNA/química , Catálise , Benzimidazóis/química
14.
Cell Rep Methods ; 2(8): 100267, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046626

RESUMO

Secreted proteins mediate essential physiological processes. With conventional assays, it is challenging to map the spatial distribution of proteins secreted by single cells, to study cell-to-cell heterogeneity in secretion, or to detect proteins of low abundance or incipient secretion. Here, we introduce the "FluoroDOT assay," which uses an ultrabright nanoparticle plasmonic-fluor that enables high-resolution imaging of protein secretion. We find that plasmonic-fluors are 16,000-fold brighter, with nearly 30-fold higher signal-to-noise compared with conventional fluorescence labels. We demonstrate high-resolution imaging of different secreted cytokines in the single-plexed and spectrally multiplexed FluoroDOT assay that revealed cellular heterogeneity in secretion of multiple proteins simultaneously. Using diverse biochemical stimuli, including Mycobacterium tuberculosis infection, and a variety of immune cells such as macrophages, dendritic cells (DCs), and DC-T cell co-culture, we demonstrate that the assay is versatile, facile, and widely adaptable for enhancing biological understanding of spatial and temporal dynamics of single-cell secretome.


Assuntos
Citocinas , Tuberculose , Humanos , Citocinas/metabolismo , Tuberculose/metabolismo , Macrófagos , Linfócitos T/metabolismo
15.
Mol Immunol ; 134: 172-182, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33799071

RESUMO

Macrophages are fundamental for initiation, maintenance, and resolution of inflammation. They can be activated by 'Toll-like receptor' (TLR) engagement, which initiates critical pathways to fight infections. 'Interleukin receptor-associated kinase 2' (IRAK2) is part of the membrane-proximal Myddosome formed at IL-1R/TLRs, but utility and regulation of IRAK2 within is not completely understood. In this study, we addressed the importance of the evolutionary conserved extreme C-terminus of IRAK2 in TLR signaling. The last 55 amino acids lack any known functional domain. The C-terminus deletion mutant IRAK2Δ55 was hypofunctional and disabled to conduct TLR4-inducible NF-κB and ERK2 activation. Accordingly, it could neither fully support subsequent CD40 cell surface expression nor IL-6 and nitric oxide release. Interestingly, IRAK2Δ55 was still capable to bind to 'tumor necrosis factor receptor-associated factor 6' (TRAF6), which is requisite to activate TRAF6 as an E3-ubiquitin ligase for further downstream signaling. However, IRAK-dependent auto-ubiquitination of TRAF6 was impaired, when IRAK2Δ55 was bound. Thus, the conserved last 55 amino acids enable IRAK2 to sustain an optimal TLR response. This knowledge might spark ideas how overshooting inflammatory responses could be modified without blocking the entire immune response.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Receptores Toll-Like/metabolismo , Animais , Células HEK293 , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Quinases Associadas a Receptores de Interleucina-1/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Fator 6 Associado a Receptor de TNF/imunologia , Receptores Toll-Like/imunologia , Ubiquitinação
17.
J Leukoc Biol ; 108(2): 469-484, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32083332

RESUMO

CXXC5 is a member of the CXXC-type zinc finger epigenetic regulators. Various hematopoietic and nonhematopoietic roles have been assigned to CXXC5. In the present study, the role of Cxxc5 in myelopoiesis was studied using overexpression and short hairpin RNA-mediated knockdown in mouse early stem and progenitor cells defined as Lineage- Sca-1+ c-Kit+ (LSK) cells. Knockdown of Cxxc5 in mouse progenitor cells reduced monocyte and increased granulocyte development in ex vivo culture systems. In addition, ex vivo differentiation and proliferation experiments demonstrated that the expression of Cxxc5 affects the cell cycle in stem/progenitor cells and myeloid cells. Flow cytometry-based analyses revealed that down-regulation of Cxxc5 leads to an increase in the percentage of cells in the S phase, whereas overexpression results in a decrease in the percentage of cells in the S phase. Progenitor cells proliferate more after Cxxc5 knockdown, and RNA sequencing of LSK cells, and single-cell RNA sequencing of differentiating myeloid cells showed up-regulation of genes involved in the regulation of cell cycle after Cxxc5 knockdown. These results provide novel insights into the physiologic function of Cxxc5 during hematopoiesis, and demonstrate for the first time that it plays a role in monocyte development.


Assuntos
Ciclo Celular/genética , Diferenciação Celular/genética , Proteínas de Ligação a DNA/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Mielopoese , Fatores de Transcrição/genética , Alelos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Camundongos Transgênicos , Células Mieloides/citologia , Células Mieloides/metabolismo
18.
Front Pediatr ; 7: 139, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069201

RESUMO

We report a novel variant in IKZF1 associated with IKAROS haploinsufficiency in a patient with familial immune thrombocytopenia (ITP). IKAROS, encoded by the IKZF1 gene, is a hematopoietic zinc-finger transcription factor that can directly bind to DNA. We show that the identified IKZF1 variant (p.His195Arg) alters a completely conserved histidine residue required for the folding of the third zinc-finger of IKAROS protein, leading to a loss of characteristic immunofluorescence nuclear staining pattern. In our case, genetic testing was essential for the diagnosis of IKAROS haploinsufficiency, of which known presentations include infections, aberrant hematopoiesis, leukemia, and age-related decrease in humoral immunity. Our family study underscores that, after infections, ITP is the second most common clinical manifestation of IKAROS haploinsufficiency.

19.
Headache ; 57(7): 1096-1108, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470754

RESUMO

OBJECTIVE: To see the interrelation between chronic tension-type headache (CTTH) and serum vitamin D levels. BACKGROUND: Several studies have suggested an association between chronic pain and vitamin D deficiency. Anecdotal evidence suggests that vitamin D deficiency may be associated with tension-type headache and migraine. METHODS: This case-control study was carried out to examine the association between CTTH and serum 25-hydroxy vitamin (25(OH) D) levels. One hundred consecutive adult (>18 years) patients with CTTH and 100 matched healthy controls were enrolled. RESULTS: The serum 25(OH) D levels were significantly lower in CTTH patients than in the controls (14.7 vs 27.4 ng/mL). The prevalence of vitamin D deficiency (serum 25 (OH) D < 20 ng/mL) was greater in patients with CTTH (71% vs 25%). CTTH patients had a significantly high prevalence of musculoskeletal pain (79% vs 57%), muscle weakness (29%vs 10%), muscle tenderness score (7.5 vs 1.9), and bone tenderness score (3.0 vs 0.8) in comparison to controls. CTTH patients with vitamin D deficient group (<20 ng/mL) had a higher prevalence of musculoskeletal pain (58% vs 31%), muscle weakness (38%vs 7%), muscle and bone tenderness score, associated fatigue (44% vs 17%) and more prolonged course (15.5 months vs 11.2 months). A strong positive correlation was noted between serum vitamin D levels and total muscle tenderness score (R2 = 0. 7365) and total bone tenderness score (R2 = 0. 6293). CONCLUSION: Decreased serum 25(OHD) concentration was associated with CTTH. Intervention studies are required to find out if supplementation of vitamin D is effective in patients with CTTH.


Assuntos
Cefaleia do Tipo Tensional/complicações , Deficiência de Vitamina D/complicações , Adulto , Calcifediol/metabolismo , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia , Medição da Dor , Inquéritos e Questionários , Cefaleia do Tipo Tensional/sangue , Deficiência de Vitamina D/sangue , Adulto Jovem
20.
Proc Natl Acad Sci U S A ; 111(14): 5331-6, 2014 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-24706848

RESUMO

Hypoxia-driven changes in the tumor microenvironment facilitate cancer metastasis. In the present study, we investigated the regulatory cross talk between endocytic pathway, hypoxia, and tumor metastasis. Dynamin 2 (DNM2), a GTPase, is a critical mediator of endocytosis. Hypoxia decreased the levels of DNM2. DNM2 promoter has multiple hypoxia-inducible factor (HIF)-binding sites and genetic deletion of them relieved hypoxia-induced transcriptional suppression. Interestingly, DNM2 reciprocally regulated HIF. Inhibition of DNM2 GTPase activity and dominant-negative mutant of DNM2 showed a functional role for DNM2 in regulating HIF. Furthermore, the opposite strand of DNM2 gene encodes miR-199a, which is similarly reduced in cancer cells under hypoxia. miR-199a targets the 3'-UTR of HIF-1α and HIF-2α. Decreased miR-199a expression in hypoxia increased HIF levels. Exogenous expression of miR-199a decreased HIF, cell migration, and metastasis of ovarian cancer cells. miR-199a-mediated changes in HIF levels affected expression of the matrix-remodeling enzyme, lysyloxidase (LOX). LOX levels negatively correlated with progression-free survival in ovarian cancer patients. These results demonstrate a regulatory relationship between DNM2, miR-199a, and HIF, with implications in cancer metastasis.


Assuntos
Dinamina II/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , MicroRNAs/fisiologia , Metástase Neoplásica , Neoplasias Ovarianas/patologia , Regulação para Baixo , Matriz Extracelular/metabolismo , Feminino , Humanos , Lipoxigenase/metabolismo , MicroRNAs/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Peritoneais/secundário
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA