RESUMO
Multiple myeloma has a continued need for more effective and durable therapies. B cell maturation antigen (BCMA), a plasma cell surface antigen and member of the tumor necrosis factor (TNF) receptor superfamily, is an attractive target for immunotherapy of multiple myeloma due to its high prevalence on malignant plasma cells. The current work details the pre-clinical evaluation of BCMA expression and development of a chimeric antigen receptor (CAR) targeting this antigen using a fully human single chain variable fragment (scFv). We demonstrate that BCMA is prevalently, but variably expressed by all MM with expression on 25-100% of malignant plasma cells. Extensive Immunohistochemical analysis of normal tissue expression using commercially available polyclonal antibodies demonstrated expression within B-lineage cells across a number of tissues as expected. Based upon the highly restricted expression of BCMA within normal tissues, we generated a set of novel, fully human scFv binding domains to BCMA by screening a naïve B-cell derived phage display library. Using a series of in vitro and pre-clinical in vivo studies, we identified a scFv with high specificity for BCMA and robust anti-myeloma activity when used as the binding domain of a second-generation CAR bearing a CD137 costimulatory domain. This BCMA-specific CAR is currently being evaluated in a Phase 1b clinical study in relapsed and refractory MM patients (NCT02546167).
RESUMO
Mesothelin, a cancer biomarker overexpressed in tumors of epithelial origin, is a target for nanotechnology-based diagnostic, therapeutic, and prognostic applications. The currently available anti-mesothelin antibodies present limitations, including low penetration due to large size and/or lack of in vivo stability. Single domain antibodies (sdAbs) or nanobodies (Nbs) provide powerful solutions to these specific problems. We generated a phage-display library of Nbs that were amplified from B cells of a llama that was immunized with human recombinant mesothelin. Two nanobodies (Nb A1 and Nb C6) were selected on the basis of affinity (K(D) = 15 and 30 nM, respectively). Nb A1 was further modified by adding either a cysteine to permit maleimide-based bioconjugations or a sequence for the site-specific metabolic addition of a biotin in vivo. Both systems of conjugation (thiol-maleimide and streptavidin/biotin) were used to characterize and validate Nb A1 and to functionalize nanoparticles. We showed that anti-mesothelin Nb A1 could detect native and denatured mesothelin in various diagnostic applications, including flow cytometry, western blotting, immunofluorescence, and optical imaging. In conclusion, anti-mesothelin Nbs are novel, cost-effective, small, and single domain reagents with high affinity and specificity for the tumor-associated antigen mesothelin, which can be simply bioengineered for attachment to nanoparticles or modified surfaces using multiple bioconjugation strategies. These anti-mesothelin Nbs can be useful in both conventional and nanotechnology-based diagnostic, therapeutic and prognostic biomedical applications.
Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Proteínas Ligadas por GPI/imunologia , Nanopartículas/uso terapêutico , Frações Subcelulares/imunologia , Anticorpos Monoclonais/genética , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Células HeLa , Humanos , Mesotelina , Nanopartículas/química , Nanopartículas/ultraestrutura , Engenharia de Proteínas/métodos , Frações Subcelulares/patologiaRESUMO
B7-H4 (VTCN1, B7x, B7s) is a ligand for inhibitory coreceptors on T cells implicated in antigenic tolerization. B7-H4 is expressed by tumor cells and tumor-associated macrophages (TAM), but its potential contributions to tumoral immune escape and therapeutic targeting have been less studied. To interrogate B7-H4 expression on tumor cells, we analyzed fresh primary ovarian cancer cells collected from patient ascites and solid tumors, and established cell lines before and after in vivo passaging. B7-H4 expression was detected on the surface of all fresh primary human tumors and tumor xenotransplants, but not on most established cell lines, and B7-H4 was lost rapidly by tumor xenograft cells after short-term in vitro culture. These results indicated an in vivo requirement for B7-H4 induction and defined conditions for targeting studies. To generate anti-B7-H4-targeting reagents, we isolated antibodies by differential cell screening of a yeast-display single-chain fragments variable (scFv) library derived from patients with ovarian cancer. We identified anti-B7-H4 scFv that reversed in vitro inhibition of CD3-stimulated T cells by B7-H4 protein. Notably, these reagents rescued tumor antigen-specific T-cell activation, which was otherwise inhibited by coculture with antigen-loaded B7-H4+ APCs, B7-H4+ tumor cells, or B7-H4- tumor cells mixed with B7-H4+ TAMs; peritoneal administration of anti-B7-H4 scFv delayed the growth of established tumors. Together, our findings showed that cell surface expression of B7-H4 occurs only in tumors in vivo and that antibody binding of B7-H4 could restore antitumor T-cell responses. We suggest that blocking of B7-H4/B7-H4 ligand interactions may represent a feasible therapeutic strategy for ovarian cancer.
Assuntos
Neoplasias Ovarianas/imunologia , Anticorpos de Cadeia Única/imunologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/imunologia , Animais , Ascite , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Inibidor 1 da Ativação de Células T com Domínio V-Set/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Fibroblast growth factor 21 (FGF21) is a potent antidiabetic and triglyceride-lowering hormone whose hepatic expression is highly responsive to food intake. FGF21 induction in the adaptive response to fasting has been well studied, but the molecular mechanism responsible for feeding-induced repression remains unknown. In this study, we demonstrate a novel link between FGF21 and a key circadian output protein, E4BP4. Expression of Fgf21 displays a circadian rhythm, which peaks during the fasting phase and is anti-phase to E4bp4, which is elevated during feeding periods. E4BP4 strongly suppresses Fgf21 transcription by binding to a D-box element in the distal promoter region. Depletion of E4BP4 in synchronized Hepa1c1c-7 liver cells augments the amplitude of Fgf21 expression, and overexpression of E4BP4 represses FGF21 secretion from primary mouse hepatocytes. Mimicking feeding effects, insulin significantly increases E4BP4 expression and binding to the Fgf21 promoter through AKT activation. Thus, E4BP4 is a novel insulin-responsive repressor of FGF21 expression during circadian cycles and feeding.
Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Carcinoma Hepatocelular/metabolismo , Ritmo Circadiano/fisiologia , Comportamento Alimentar , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Neoplasias Hepáticas/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Western Blotting , Carcinoma Hepatocelular/genética , Células Cultivadas , Imunoprecipitação da Cromatina , Ensaio de Imunoadsorção Enzimática , Fatores de Crescimento de Fibroblastos/metabolismo , Hepatócitos/metabolismo , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The identification of nonporphyrin ligands for the orphan nuclear receptor Rev-erbα will enable studies of its role as a heme sensor and regulator of metabolic and circadian signaling. We describe the development of a biochemical assay measuring the interaction between Rev-erbα and a peptide from the nuclear receptor corepressor-1 (NCoR). The assay was utilized to identify a small molecule ligand for Rev-erbα, GSK4112 (1), that was competitive with heme. In cells, 1 profiled as a Rev-erbα agonist in cells to inhibit expression of the circadian target gene bmal1. In addition, 1 repressed the expression of gluconeogenic genes in liver cells and reduced glucose output in primary hepatocytes. Therefore, 1 is useful as a chemical tool to probe the function of Rev-erbα in transcriptional repression, regulation of circadian biology, and metabolic pathways. Additionally, 1 may serve as a starting point for design of Rev-erbα chemical probes with in vivo pharmacological activity.
Assuntos
Glicina/análogos & derivados , Correpressor 1 de Receptor Nuclear/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Peptídeos/metabolismo , Mapeamento de Interação de Proteínas/métodos , Bibliotecas de Moléculas Pequenas/metabolismo , Tiofenos/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular , Células Cultivadas , Ritmo Circadiano , Glicina/química , Glicina/metabolismo , Heme/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Correpressor 1 de Receptor Nuclear/química , Peptídeos/química , Bibliotecas de Moléculas Pequenas/química , Tiofenos/químicaRESUMO
The metazoan circadian clock mechanism involves cyclic transcriptional activation and repression by proteins whose degradation is highly regulated via the ubiquitin-proteasome pathway. The heme receptor Rev-erb alpha, a core negative component of the circadian network, controls circadian oscillation of several clock genes, including Bmal1 Rev-erb alpha protein degradation can be triggered by inhibitors of glycogen synthase kinase 3beta, such as lithium, and also by serum shock, which synchronizes circadian rhythms in cultured cells. Here we report that two E3 ligases, Arf-bp1 and Pam (Myc-bp2), are copurified with Rev-erb alpha and required for its ubiquitination. RNA-interference-mediated depletion of Arf-bp1 and Pam stabilizes the Rev-erb alpha protein and protects Rev-erb alpha from degradation triggered by either lithium or serum shock treatment. This degradation pathway modulates the expression of Rev-erb alpha-regulated Clock gene and circadian function in mouse hepatoma cells. Thus, Arf-bp1 and Pam are novel regulators of circadian gene expression that target Rev-erb alpha for degradation.
Assuntos
Amidina-Liases/metabolismo , Ritmo Circadiano , Regulação Enzimológica da Expressão Gênica , Lítio/farmacologia , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Imunoprecipitação da Cromatina , Humanos , Camundongos , Proteínas Supressoras de TumorRESUMO
We are interested in the mechanism of cyclooxygenase-2 (Cox-2) regulation in colon cancer cells because this knowledge could provide insight into colon carcinogenesis and suggest ways to suppress Cox-2 expression in colon tumors. Studying the HT-29 colon cancer cell line as a model, we found that Cox-2 mRNA and protein levels were activated over 10-fold by the inflammatory cytokine tumor necrosis factor (TNF)-alpha. Moreover, we found that the histone deacetylase inhibitors butyrate and trichostatin A could block Cox-2 activation in a gene-specific manner. TNF-alpha and butyrate did not significantly affect Cox-2 promoter activity, mRNA stability, or negative regulation by the Cox-2 3'-untranslated RNA region. A nuclear run-on assay showed that TNF-alpha increased Cox-2 transcription, whereas butyrate was suppressive. Because butyrate has been reported to suppress polymerase elongation on the c-myc gene, we employed the chromatin immunoprecipitation assay to determine the influence of butyrate and trichostatin A on polymerase distribution on the Cox-2 gene. These data indicated that butyrate restricted polymerase elongation from exon 1 to 2 on both the c-myc and Cox-2 genes. We propose that histone deacetylases regulate a transcriptional block on the Cox-2 and c-myc genes and that this block may be a potential target for pharmacological intervention.