Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes Dev ; 38(7-8): 336-353, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38744503

RESUMO

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes SRCAP and P400-TIP60 in melanoma remains unclear. Here, we show that individual subunit depletion of SRCAP, P400, and VPS72 (YL1) results in not only the loss of H2A.Z deposition into chromatin but also a reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is particularly found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Histonas , Melanoma , Humanos , Melanoma/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Histonas/genética , Acetilação , Apoptose/genética , Fator de Transcrição E2F1/metabolismo , Fator de Transcrição E2F1/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
2.
bioRxiv ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38076914

RESUMO

High levels of H2A.Z promote melanoma cell proliferation and correlate with poor prognosis. However, the role of the two distinct H2A.Z histone chaperone complexes, SRCAP and P400-TIP60, in melanoma remains unclear. Here, we show that individual depletion of SRCAP, P400, and VPS72 (YL1) not only results in loss of H2A.Z deposition into chromatin, but also a striking reduction of H4 acetylation in melanoma cells. This loss of H4 acetylation is found at the promoters of cell cycle genes directly bound by H2A.Z and its chaperones, suggesting a highly coordinated regulation between H2A.Z deposition and H4 acetylation to promote their expression. Knockdown of each of the three subunits downregulates E2F1 and its targets, resulting in a cell cycle arrest akin to H2A.Z depletion. However, unlike H2A.Z deficiency, loss of the shared H2A.Z chaperone subunit YL1 induces apoptosis. Furthermore, YL1 is overexpressed in melanoma tissues, and its upregulation is associated with poor patient outcome. Together, these findings provide a rationale for future targeting of H2A.Z chaperones as an epigenetic strategy for melanoma treatment.

3.
Mol Oncol ; 16(4): 982-1008, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34293822

RESUMO

Testicular germ cell tumors (GCTs) are stratified into seminomas and nonseminomas. Seminomas share many histological and molecular features with primordial germ cells, whereas the nonseminoma stem cell population-embryonal carcinoma (EC)-is pluripotent and thus able to differentiate into cells of all three germ layers (teratomas). Furthermore, ECs are capable of differentiating into extra-embryonic lineages (yolk sac tumors, choriocarcinomas). In this study, we deciphered the molecular and (epi)genetic mechanisms regulating expression of CD24, a highly glycosylated signaling molecule upregulated in many cancers. CD24 is overexpressed in ECs compared with other GCT entities and can be associated with an undifferentiated pluripotent cell fate. We demonstrate that CD24 can be transactivated by the pluripotency factor SOX2, which binds in proximity to the CD24 promoter. In GCTs, CD24 expression is controlled by epigenetic mechanisms, that is, histone acetylation, since CD24 can be induced by the application histone deacetylase inhibitors. Vice versa, CD24 expression is downregulated upon inhibition of histone methyltransferases, E3 ubiquitin ligases, or bromodomain (BRD) proteins. Additionally, three-dimensional (3D) co-cultivation of EC cells with microenvironmental cells, such as fibroblasts, and endothelial or immune cells, reduced CD24 expression, suggesting that crosstalk with the somatic microenvironment influences CD24 expression. In a CRISPR/Cas9 deficiency model, we demonstrate that CD24 fulfills a bivalent role in differentiation via regulation of homeobox, and phospho- and glycoproteins; that is, it is involved in suppressing the germ cell/spermatogenesis program and mesodermal/endodermal differentiation, while poising the cells for ectodermal differentiation. Finally, blocking CD24 by a monoclonal antibody enhanced sensitivity toward cisplatin in EC cells, including cisplatin-resistant subclones, highlighting CD24 as a putative target in combination with cisplatin.


Assuntos
Carcinoma Embrionário , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Antígeno CD24 , Carcinoma Embrionário/genética , Carcinoma Embrionário/patologia , Humanos , Masculino , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Microambiente Tumoral
4.
Methods Mol Biol ; 2195: 85-97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32852759

RESUMO

Type II testicular germ cell tumors (GCTs) can be classified as seminoma or embryonal carcinoma. Both subtypes present distinct cellular morphologies and characteristics. Seminomas closely resemble primordial germ cells (PGCs) with respect to their transcriptome and epigenetic signature (DNA hypomethylation). They express the pluripotency markers LIN28, NANOG, and OCT3/4 and the PGC markers SOX17, PRDM1, TFAP2C, DMRT1, and cKIT. Embryonal carcinomas show increased levels of DNA methylation (hypermethylation). They also express the pluripotency markers LIN28, NANOG, and OCT3/4, but additionally DNMT3B and SOX2. In contrast to seminomas, these tumors are pluripotent to totipotent and thus able to differentiate into cells of all three germ layers (teratoma) and extraembryonic tissues (yolk-sac tumor, choriocarcinoma). This protocol summarizes the essential techniques for standard cultivation of seminoma (TCam-2), embryonal carcinoma (NCCIT, NT2/D1, 2102EP), and choriocarcinoma (JEG-3, JAR) cell lines, as well as the methods to establish gene-edited subclones using the CRISPR/Cas9 system.


Assuntos
Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Edição de Genes , Neoplasias Embrionárias de Células Germinativas/etiologia , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/etiologia , Neoplasias Testiculares/patologia , Biomarcadores Tumorais , Linhagem Celular Tumoral , Evolução Clonal , Edição de Genes/métodos , Técnicas de Inativação de Genes , Humanos , Masculino , Plasmídeos/genética , Transfecção
5.
Int J Cancer ; 146(6): 1592-1605, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31583686

RESUMO

Embryonal carcinomas (ECs) and seminomas are testicular germ cell tumors. ECs display expression of SOX2, while seminomas display expression of SOX17. In somatic differentiation, SOX17 drives endodermal cell fate. However, seminomas lack expression of endoderm markers, but show features of pluripotency. Here, we use chromatin immunoprecipitation sequencing to report and compare the binding pattern of SOX17 in seminoma-like TCam-2 cells to SOX17 in somatic cells and SOX2 in EC-like 2102EP cells. In seminoma-like cells, SOX17 was detected at canonical (SOX2/OCT4), compressed (SOX17/OCT4) and noncomposite SOX motifs. SOX17 regulates TFAP2C, PRDM1 and PRDM14, thereby maintaining latent pluripotency and suppressing somatic differentiation. In contrast, in somatic cells canonical motifs are rarely bound by SOX17. In sum, only 12% of SOX17-binding sites overlap in seminoma-like and somatic cells. This illustrates that binding site choice is highly dynamic and cell type specific. Deletion of SOX17 in seminoma-like cells resulted in loss of pluripotency, marked by a reduction of OCT4 protein level and loss of alkaline phosphatase activity. Furthermore, we found that in EC-like cells SOX2 regulates pluripotency-associated genes, most likely by partnering with OCT4. In conclusion, SOX17 (in seminomas) functionally replaces SOX2 (in ECs) to maintain expression of the pluripotency cluster.


Assuntos
Carcinoma Embrionário/genética , Neoplasias Embrionárias de Células Germinativas/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXF/metabolismo , Seminoma/genética , Neoplasias Testiculares/genética , Animais , Carcinoma Embrionário/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Sequenciamento de Cromatina por Imunoprecipitação , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/patologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/genética , Proteínas de Ligação a RNA/genética , Seminoma/patologia , Neoplasias Testiculares/patologia , Fator de Transcrição AP-2/genética , Fatores de Transcrição/genética , Ativação Transcricional/genética , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cancers (Basel) ; 11(5)2019 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-31130628

RESUMO

Testicular germ cell tumors (GCTs) are very common in young men and can be stratified into seminomas and non-seminomas. While seminomas share a similar gene expression and epigenetic profile with primordial germ cells, the stem cell population of the non-seminomas, the embryonal carcinoma (EC), resembles malignant embryonic stem cells. Thus, ECs are able to differentiate into cells of all three germ layers (teratomas) and even extra-embryonic-tissue-like cells (yolk-sac tumor, choriocarcinoma). In the last years, we demonstrated that the cellular microenvironment considerably influences the plasticity of seminomas (TCam-2 cells). Upon a microenvironment-triggered inhibition of the BMP signaling pathway in vivo (murine flank or brain), seminomatous TCam-2 cells reprogram to an EC-like cell fate. We identified SOX2 as a key factor activated upon BMP inhibition mediating the reprogramming process by regulating pluripotency, reprogramming and epigenetic factors. Indeed, CRISPR/Cas9 SOX2-deleted TCam-2 cells were able to maintain a seminoma-cell fate in vivo for about six weeks, but after six weeks in vivo still small sub-populations initiated differentiation. Closer analyses of these differentiated clusters suggested that the pioneer factor FOXA2 might be the driving force behind this induction of differentiation, since many FOXA2 interacting genes and differentiation factors like AFP, EOMES, CDX1, ALB, HAND1, DKK, DLK1, MSX1 and PITX2 were upregulated. In this study, we generated TCam-2 cells double-deficient for SOX2 and FOXA2 using the CRISPR/Cas9 technique and xenografted those cells into the flank of nude mice. Upon loss of SOX2 and FOXA2, TCam-2 maintained a seminoma cell fate for at least twelve weeks, demonstrating that both factors are key players in the reprogramming to an EC-like cell fate. Therefore, our study adds an important piece to the puzzle of GCT development and plasticity, providing interesting insights in what can be expected in a patient, when GCT cells are confronted with different microenvironments.

7.
Nat Rev Urol ; 16(4): 245-259, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30765888

RESUMO

Current treatment regimens for type II testicular germ cell tumours (TGCTs) achieve cure rates of ≥95%; however, 1-5% of TGCTs develop resistance to standard platinum-based chemotherapy. Patients with recurrent TGCT typically receive high-dose chemotherapy, but this treatment results in severe adverse effects and cytotoxicity. Thus, alternative treatment options should be considered to improve patient well-being and quality of life. Epigenetic drugs could be feasible options for TGCT treatment. Several compounds have already been tested in TGCT cell lines and xenograft models with promising results. These compounds include DNA demethylating agents (such as SGI-110), histone demethylase inhibitors (such as the lysine-specific histone demethylase 1A (LSD1) inhibitor CBB3001), histone deacetylase (HDAC) inhibitors (such as romidepsin) and bromodomain inhibitors (such as JQ1). Despite the diversity in their molecular effects, most epigenetic compounds show strong overlap in their genetic response. The use of epigenetic drugs in TGCTs triggers a cellular stress response, induction of differentiation and downregulation of genes associated with pluripotency, leading to growth arrest and apoptosis. Additive effects are seen using a combination of JQ1 and romidepsin. The availability of dual drugs (such as LSD1-HDAC1 hybrid inhibitors) could additionally take advantage of drug synergy effects. Thus, epigenetic drugs are novel tools that could be combined with standard therapy approaches to improve treatment of TGCTs.


Assuntos
Antineoplásicos/uso terapêutico , Epigênese Genética/efeitos dos fármacos , Epigênese Genética/genética , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Testiculares/tratamento farmacológico , Neoplasias Testiculares/genética , Humanos , Masculino
8.
J Cell Mol Med ; 23(1): 670-679, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30460772

RESUMO

Testicular germ cell tumours (GCTs) mostly affect young men at age 17-40. Although high cure rates can be achieved by orchiectomy and chemotherapy, GCTs can still be a lethal threat to young patients with metastases or therapy resistance. Thus, alternative treatment options are needed. Based on studies utilising GCT cell lines, the histone deacetylase inhibitor romidepsin is a promising therapeutic option, showing high toxicity at very low doses towards cisplatin-resistant GCT cells, but not fibroblasts or Sertoli cells. In this study, we extended our analysis of the molecular effects of romidepsin to deepen our understanding of the underlying mechanisms. Patients will benefit from these analyses, since detailed knowledge of the romidepsin effects allows for a better risk and side-effect assessment. We screened for changes in histone acetylation of specific lysine residues and analysed changes in the DNA methylation landscape after romidepsin treatment of the GCT cell lines TCam-2, 2102EP, NCCIT and JAR, while human fibroblasts were used as controls. In addition, we focused on the role of the dehydrogenase/reductase DHRS2, which was strongly up-regulated in romidepsin treated cells, by generating DHRS2-deficient TCam-2 cells using CRISPR/Cas9 gene editing. We show that DHRS2 is dispensable for up-regulation of romidepsin effectors (GADD45B, DUSP1, ZFP36, ATF3, FOS, CDKN1A, ID2) but contributes to induction of cell cycle arrest. Finally, we show that a combinatory treatment of romidepsin plus the gluccocorticoid dexamethasone further boosts expression of the romidepsin effectors and reduces viability of GCT cells more strongly than under single agent treatment. Thus, romidepsin and dexamethasone might represent a new combinatorial approach for treatment of GCT.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carbonil Redutase (NADPH)/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Depsipeptídeos/farmacologia , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Dexametasona/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Humanos , Neoplasias Embrionárias de Células Germinativas/metabolismo , Neoplasias Testiculares/metabolismo , Regulação para Cima/efeitos dos fármacos
9.
J Cell Mol Med ; 21(7): 1300-1314, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28026145

RESUMO

Type II testicular germ cell cancers (TGCT) are the most frequently diagnosed tumours in young men (20-40 years) and are classified as seminoma or non-seminoma. TGCTs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas (embryonal carcinomas) displays only incomplete remission or relapse and requires novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumour therapy, which interferes with the function of 'bromodomain and extraterminal (BET)' proteins. JQ1-treated TGCT cell lines display up-regulation of genes indicative for DNA damage and cellular stress response and induce cell cycle arrest. Embryonal carcinoma (EC) cell lines, which presented as JQ1 sensitive, display down-regulation of pluripotency factors and induction of mesodermal differentiation. In contrast, seminoma-like TCam-2 cells tolerated higher JQ1 concentrations and were resistant to differentiation. ECs xenografted in vivo showed a reduction in tumour size, proliferation rate and angiogenesis in response to JQ1. Finally, the combination of JQ1 and the histone deacetylase inhibitor romidepsin allowed for lower doses and less frequent application, compared with monotherapy. Thus, we propose that JQ1 in combination with romidepsin may serve as a novel therapeutic option for (mixed) TGCTs.


Assuntos
Apoptose/efeitos dos fármacos , Azepinas/administração & dosagem , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Triazóis/administração & dosagem , Adulto , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/genética , Neoplasias Testiculares/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Methods Mol Biol ; 1510: 211-215, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27761823

RESUMO

Histone deacetylase inhibitor application is lethal to many cancer types. To screen for the therapeutic potential of HDIs it is necessary to analyze their ability to target and kill cancer cells in vivo. Here, we describe the xenografting of (germ cell) cancer cell lines into the flank of nude mice and the subsequent intravenous application of HDIs.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Colágeno/farmacologia , Meios de Cultura/química , Combinação de Medicamentos , Histona Desacetilases/metabolismo , Humanos , Injeções Intravenosas , Laminina/farmacologia , Camundongos , Camundongos Nus , Proteoglicanas/farmacologia , Transplante Heterólogo
11.
Oncotarget ; 7(46): 74931-74946, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27572311

RESUMO

In Western countries, the incidence of testicular germ cell cancers (GCC) is steadily rising over the last decades. Mostly, men between 20 and 40 years of age are affected. In general, patients suffering from GCCs are treated by orchiectomy and radio- or chemotherapy. Due to resistance mechanisms, intolerance to the therapy or denial of chemo- / radiotherapy by the patients, GCCs are still a lethal threat, highlighting the need for alternative treatment strategies.In this study, we revealed that germ cell cancer cell lines are highly sensitive to the histone deacetylase inhibitor romidepsin in vitro and in vivo, highlighting romidepsin as a potential therapeutic option for GCC patients.Romidepsin-mediated inhibition of histone deacetylases led to disturbances of the chromatin landscape. This resulted in locus-specific histone-hyper- or hypoacetylation. We found that hypoacetylation at the ARID1A promotor caused repression of the SWI/SNF-complex member ARID1A. In consequence, this resulted in upregulation of the stress-sensors and apoptosis-regulators GADD45B, DUSP1 and CDKN1A. RNAi-driven knock down of ARID1A mimicked in parts the effects of romidepsin, while CRISPR/Cas9-mediated deletion of GADD45B attenuated the romidepsin-provoked induction of apoptosis and cell cycle alterations.We propose a signaling cascade involving ARID1A, GADD45B and DUSP1 as mediators of the romidepsin effects in GCC cells.


Assuntos
Antígenos de Diferenciação/metabolismo , Apoptose , Ciclo Celular , Fosfatase 1 de Especificidade Dupla/metabolismo , Neoplasias Embrionárias de Células Germinativas/metabolismo , Proteínas Nucleares/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Acetilação , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA , Depsipeptídeos/farmacologia , Depsipeptídeos/uso terapêutico , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Modelos Biológicos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Embrionárias de Células Germinativas/genética
12.
Reproduction ; 152(4): R101-13, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27512122

RESUMO

Human germ cell development is regulated in a spatio-temporal manner by complex regulatory networks. Here, we summarize results obtained in germ cell tumors and respective cell lines and try to pinpoint similarities to normal germ cell development. This comparison allows speculating about the critical and error-prone mechanisms, which when disturbed, lead to the development of germ cell tumors. Short after specification, primordial germ cells express markers of pluripotency, which, in humans, persists up to the stage of fetal/infantile spermatogonia. Aside from the rare spermatocytic tumors, virtually all seminomas and embryonal carcinomas express markers of pluripotency and show signs of pluripotency or totipotency. Therefore, it appears that proper handling of the pluripotency program appears to be the most critical step in germ cell development in terms of tumor biology. Furthermore, data from mice reveal that germline cells display an epigenetic signature, which is highly similar to pluripotent cells. This signature (poised histone code, DNA hypomethylation) is required for the rapid induction of toti- and pluripotency upon fertilization. We propose that adult spermatogonial cells, when exposed to endocrine disruptors or epigenetic active substances, are prone to reinitiate the pluripotency program, giving rise to a germ cell tumor. The fact that pluripotent cells can be derived from adult murine and human testicular cells further corroborates this idea.


Assuntos
Diferenciação Celular , Células Germinativas/patologia , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/patologia , Humanos , Masculino
13.
Br J Cancer ; 115(4): 454-64, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27441500

RESUMO

BACKGROUND: Cancer/testis-antigens (CTAs) are specifically expressed in human malignancies and testis tissue, but their molecular functions are poorly understood. CTAs serve as regulators of gene expression, cell cycle and spermatogenesis, as well as targets for immune-based therapies. The CTA PRAME is expressed in various cancers, antagonises retinoic acid signalling and is regulated by DNA methylation and histone acetylation. METHODS: We analysed the molecular function of the CTA PRAME in primordial germ cells (PGC) and testicular germ cell cancers (GCC). GCCs arise from a common precursor lesion termed germ cell neoplasia in situ (GCNIS), which itself is thought to originate from a defective PGC. GCNIS cells eventually develop into unipotent seminomas or totipotent embryonal carcinomas (ECs), which are capable of differentiation into teratomas, yolk-sac tumours and choriocarcinomas. RESULTS: PRAME is, like the master regulator of PGCs SOX17 expressed in human PGCs, GCNIS and seminomas but absent in ECs. shRNA-mediated knockdown of PRAME in seminomatous TCam-2 cells left SOX17 levels unchanged, but resulted in downregulation of pluripotency- and PGC-related genes (LIN28, PRDM14, ZSCAN10), whereas somatic and germ cell differentiation markers were upregulated. So, PRAME seems to act downstream of SOX17 by mediating the regulation of the germ cell differentiation and pluripotency programme. Endoderm differentiation is triggered in somatic cells by SOX17, suggesting that in PGCs, PRAME represses this programme and modulates SOX17 to function as a PGC-master regulator. Surprisingly, knockdown of PRAME in TCam-2 cells did not render the cells sensitive towards retinoic acid, despite the fact that PRAME has been described to antagonise retinoic acid signalling. Finally, we demonstrate that in non-seminomas PRAME expression is silenced by DNA methylation, which can be activated by formation of euchromatin via histone-deacetylase-inhibitors. CONCLUSIONS: We identified the CTA PRAME as a downstream factor of SOX17 and LIN28 in regulating pluripotency and suppressing somatic/germ cell differentiation in PGC, GCNIS and seminomas.


Assuntos
Antígenos de Neoplasias/genética , Diferenciação Celular/genética , Células Germinativas/metabolismo , RNA Mensageiro/metabolismo , Seminoma/genética , Neoplasias Testiculares/genética , Testículo/metabolismo , Antígenos de Neoplasias/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células Cultivadas , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Masculino , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Seminoma/metabolismo , Neoplasias Testiculares/metabolismo
14.
Oncotarget ; 7(30): 47095-47110, 2016 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-27283990

RESUMO

Type II germ cell cancers (GCC) are divided into seminomas, which are highly similar to primordial germ cells and embryonal carcinomas (EC), often described as malignant counterparts to embryonic stem cells.Previously, we demonstrated that the development of GCCs is a highly plastic process and strongly influenced by the microenvironment. While orthotopic transplantation into the testis promotes seminomatous growth of the seminoma-like cell line TCam-2, ectopic xenotransplantation into the flank initiates reprogramming into an EC-like fate.During this reprogramming, BMP signaling is inhibited, leading to induction of NODAL signaling, upregulation of pluripotency factors and downregulation of seminoma markers, like SOX17. The pluripotency factor and EC-marker SOX2 is strongly induced.Here, we adressed the molecular role of SOX2 in this reprogramming. Using CRISPR/Cas9-mediated genome-editing, we established SOX2-deficient TCam-2 cells. Xenografting of SOX2-deficient cells into the flank of nude mice resulted in maintenance of a seminoma-like fate, indicated by the histology and expression of OCT3/4, SOX17, TFAP2C, PRDM1 and PRAME. In SOX2-deficient cells, BMP signaling is inhibited, but NODAL signaling is not activated. Thus, SOX2 appears to be downstream of BMP signaling but upstream of NODAL activation. So, SOX2 is an essential factor in acquiring an EC-like cell fate from seminomas.A small population of differentiated cells was identified resembling a mixed non-seminoma. Analyses of these cells revealed downregulation of the pluripotency and seminoma markers OCT3/4, SOX17, PRDM1 and TFAP2C. In contrast, the pioneer factor FOXA2 and its target genes were upregulated, suggesting that FOXA2 might play an important role in induction of non-seminomatous differentiation.


Assuntos
Carcinoma Embrionário/patologia , Fatores de Transcrição SOXB1/metabolismo , Seminoma/patologia , Animais , Carcinoma Embrionário/genética , Carcinoma Embrionário/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Reprogramação Celular/fisiologia , Técnicas de Inativação de Genes , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Proteína Nodal/metabolismo , Fatores de Transcrição SOXB1/deficiência , Fatores de Transcrição SOXB1/genética , Seminoma/genética , Seminoma/metabolismo , Transfecção
15.
PLoS Genet ; 11(7): e1005415, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26226633

RESUMO

Type II germ cell cancers (GCC) can be subdivided into seminomas and non-seminomas. Seminomas are similar to carcinoma in situ (CIS) cells, the common precursor of type II GCCs, with regard to epigenetics and expression, while embryonal carcinomas (EC) are totipotent and differentiate into teratomas, yolk-sac tumors and choriocarcinomas. GCCs can present as seminomas with a non-seminoma component, raising the question if a CIS gives rise to seminomas and ECs at the same time or whether seminomas can be reprogrammed to ECs. In this study, we utilized the seminoma cell line TCam-2 that acquires an EC-like status after xenografting into the murine flank as a model for a seminoma to EC transition and screened for factors initiating and driving this process. Analysis of expression and DNA methylation dynamics during transition of TCam-2 revealed that many pluripotency- and reprogramming-associated genes were upregulated while seminoma-markers were downregulated. Changes in expression level of 53 genes inversely correlated to changes in DNA methylation. Interestingly, after xenotransplantation 6 genes (GDF3, NODAL, DNMT3B, DPPA3, GAL, AK3L1) were rapidly induced, followed by demethylation of their genomic loci, suggesting that these 6 genes are poised for expression driving the reprogramming. We demonstrate that inhibition of BMP signaling is the initial event in reprogramming, resulting in activation of the pluripotency-associated genes and NODAL signaling. We propose that reprogramming of seminomas to ECs is a multi-step process. Initially, the microenvironment causes inhibition of BMP signaling, leading to induction of NODAL signaling. During a maturation phase, a fast acting NODAL loop stimulates its own activity and temporarily inhibits BMP signaling. During the stabilization phase, a slow acting NODAL loop, involving WNTs re-establishes BMP signaling and the pluripotency circuitry. In parallel, DNMT3B-driven de novo methylation silences seminoma-associated genes and epigenetically fixes the EC state.


Assuntos
Proteínas Morfogenéticas Ósseas/genética , Carcinoma Embrionário/genética , Epigênese Genética , Proteína Nodal/genética , Seminoma/genética , Animais , Carcinoma Embrionário/patologia , Linhagem Celular Tumoral , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/genética , Seminoma/patologia , Transdução de Sinais , Teratoma/genética , Teratoma/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA