Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prog Mol Biol Transl Sci ; 209: 1-60, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39461748

RESUMO

Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.


Assuntos
Imunidade Inata , Imunoterapia , Linfócitos , Neoplasias , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Imunoterapia/métodos , Animais , Linfócitos/imunologia , Terapia de Alvo Molecular
2.
Arch Bone Jt Surg ; 12(7): 441-456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39070875

RESUMO

Objectives: 3D-printing is a rapidly developing technology with applications in orthopaedics including pre-operative planning, intraoperative guides, design of patient specific instruments and prosthetics, and education. Existing literature demonstrates that in the surgical treatment of a wide range of orthopaedic pathology, using 3D printing shows favourable outcomes. Despite this evidence 3D printing is not routinely used in orthopaedic practice. We aim to evaluate the advantages of 3D printing in orthopaedic surgery to demonstrate its widespread applications throughout the field. Methods: We performed a comprehensive systematic review and meta-analysis. AMED, EMBASE, EMCARE, HMIC, PsycINFO, PubMed, BNI, CINAHL and Medline databases were searched using Healthcare Databases Advanced Search (HDAS) platform. The search was conducted to include papers published before 8th November 2020. Clinical trials, journal articles, Randomised Control Trials and Case Series were included across any area of orthopaedic surgery. The primary outcomes measured were operation time, blood loss, fluoroscopy time, bone fusion time and length of hospital stay. Results: A total of 65 studies met the inclusion criteria and were reviewed, and 15 were suitable for the meta-analysis, producing a data set of 609 patients. The use of 3D printing in any of its recognised applications across orthopaedic surgery showed an overall reduction in operative time (SMD = -1.30; 95%CI: -1.73, -0.87), reduction in intraoperative blood loss (SMD = -1.58; 95%CI: -2.16, -1.00) and reduction in intraoperative fluoroscopy time (SMD = -1.86; 95%CI: -2.60, -1.12). There was no significant difference in length of hospital stay or in bone fusion time post-operatively. Conclusion: The use of 3D printing in orthopaedics leads to an improvement in primary outcome measures showing reduced operative time, intraoperative blood loss and number of times fluoroscopy is used. With its wide-reaching applications and as the technology improves, 3D printing could become a valuable addition to an orthopaedic surgeon's toolbox.

3.
Explor Target Antitumor Ther ; 5(2): 296-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38745765

RESUMO

Innate lymphoid cells (ILCs) are the most recently discovered class of innate immune cells found to have prominent roles in various human immune-related pathologies such as infection and autoimmune diseases. However, their role in cancer was largely unclear until recently, where several emerging studies over the past few years unanimously demonstrate ILCs to be critical players in tumour immunity. Being the innate counterpart of T cells, ILCs are potent cytokine producers through which they orchestrate the overall immune response upstream of adaptive immunity thereby modulating T cell function. Out of the major ILC subsets, ILC1s have gained significant traction as potential immunotherapeutic candidates due to their central involvement with the anti-tumour type 1 immune response. ILC1s are potent producers of the well-established anti-tumour cytokine interferon γ (IFNγ), and exert direct cytotoxicity against cancer cells in response to the cytokine interleukin-15 (IL-15). However, in advanced diseases, ILC1s are found to demonstrate an exhausted phenotype in the tumour microenvironment (TME) with impaired effector functions, characterised by decreased responsiveness to cytokines and reduced IFNγ production. Tumour cells produce immunomodulatory cytokines such as transforming growth factor ß (TGFß) and IL-23, and through these suppress ILC1 anti-tumour actfivities and converts ILC1s to pro-tumoural ILC3s respectively, resulting in disease progression. This review provides a comprehensive overview of ILC1s in tumour immunity, and discusses the exciting prospects of harnessing ILC1s for cancer immunotherapy, either alone or in combination with cytokine-based treatment. The exciting prospects of targeting the upstream innate immune system through ILC1s may surmount the limitations associated with adaptive immune T cell-based strategies used in the clinic currently, and overcome cancer immunotherapeutic resistance.

4.
Explor Target Antitumor Ther ; 5(1): 187-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464388

RESUMO

Cancer is the leading cause of death globally superseded only by cardiovascular diseases, and novel strategies to overcome therapeutic resistance against existing cancer treatments are urgently required. Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells with potent immunosuppressive capacity against well-established anti-tumour effectors such as natural killer cells (NK cells) and T cells thereby promoting cancer initiation and progression. Critically, MDSCs are readily identified in almost all tumour types and human cancer patients, and numerous studies in the past decade have recognised their role in contributing to therapeutic resistance against all four pillars of modern cancer treatment, namely surgery, chemotherapy, radiotherapy and immunotherapy. MDSCs suppress anti-tumour immunity through a plethora of mechanisms including the well-characterised arginase 1 (Arg1), inducible nitric oxide synthase (iNOS) and reactive oxygen species (ROS)-mediated pathways, along with several other more recently discovered. MDSCs are largely absent in healthy homeostatic states and predominantly exist in pathological conditions, making them attractive therapeutic targets. However, the lack of specific markers identified for MDSCs to date greatly hindered therapeutic development, and currently there are no clinically approved drugs that specifically target MDSCs. Methods to deplete MDSCs clinically and inhibit their immunosuppressive function will be crucial in advancing cancer treatment and to overcome treatment resistance. This review provides a detailed overview of the current understandings behind the mechanisms of MDSC-mediated suppression of anti-tumour immunity, and discusses potential strategies to target MDSC immunosuppressive mechanisms to overcome therapeutic resistance.

5.
Br J Hosp Med (Lond) ; 84(10): 1-10, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37906072

RESUMO

Supermicrosurgery was popularised in 1997 and is defined as a technique of microvascular anastomosis for single nerve fascicles and vessels 0.3-0.8 mm in diameter. It requires the use of powerful microscopes, ultradelicate microsurgical instruments and specialist dyes. The development of supermicrosurgery has vastly improved the ability of microsurgeons to create true perforator flaps with minimal donor site morbidity for reconstructive surgery and improved the precision of additional microsurgical techniques. This review outlines the origins and history of supermicrosurgery, its current applications in reconstructive surgery (including fingertip reconstructions, true perforator flap surgery, nerve flaps and lymphoedema surgery), supermicrosurgery training and future directions for the field.


Assuntos
Linfedema , Procedimentos de Cirurgia Plástica , Humanos , Retalhos Cirúrgicos , Anastomose Cirúrgica , Linfedema/cirurgia
7.
Tissue Eng Regen Med ; 20(6): 793-809, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37651091

RESUMO

Recent studies of exosomes derived from mesenchymal stem cells (MSCs) have indicated high potential clinical applications in many diseases. However, the limited source of MSCs impedes their clinical research and application. Most recently, induced pluripotent stem cells (iPSCs) have become a promising source of MSCs. Exosome therapy based on iPSC-derived MSCs (iMSCs) is a novel technique with much of its therapeutic potential untapped. Compared to MSCs, iMSCs have proved superior in cell proliferation, immunomodulation, generation of exosomes capable of controlling the microenvironment, and bioactive paracrine factor secretion, while also theoretically eliminating the dependence on immunosuppression drugs. The therapeutic effects of iMSC-derived exosomes are explored in many diseases and are best studied in wound healing, cardiovascular disease, and musculoskeletal pathology. It is pertinent clinicians have a strong understanding of stem cell therapy and the latest advances that will eventually translate into clinical practice. In this review, we discuss the various applications of exosomes derived from iMSCs in clinical medicine.


Assuntos
Doenças Cardiovasculares , Exossomos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Humanos , Proliferação de Células
8.
Explor Target Antitumor Ther ; 4(3): 474-497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37455828

RESUMO

Cancer remains the second leading cause of death worldwide despite modern breakthroughs in medicine, and novel treatments are urgently needed. The revolutionary success of immune checkpoint inhibitors in the past decade serves as proof of concept that the immune system can be effectively harnessed to treat cancer. Cytokines are small signalling proteins with critical roles in orchestrating the immune response and have become an attractive target for immunotherapy. Type 1 immune cytokines, including interferon γ (IFNγ), interleukin-12 (IL-12), and tumour necrosis factor α (TNFα), have been shown to have largely tumour suppressive roles in part through orchestrating anti-tumour immune responses mediated by natural killer (NK) cells, CD8+ T cells and T helper 1 (Th1) cells. Conversely, type 2 immunity involving group 2 innate lymphoid cells (ILC2s) and Th2 cells are involved in tissue regeneration and wound repair and are traditionally thought to have pro-tumoural effects. However, it is found that the classical type 2 immune cytokines IL-4, IL-5, IL-9, and IL-13 may have conflicting roles in cancer. Similarly, type 2 immunity-related cytokines IL-25 and IL-33 with recently characterised roles in cancer may either promote or suppress tumorigenesis in a context-dependent manner. Furthermore, type 1 cytokines IFNγ and TNFα have also been found to have pro-tumoural effects under certain circumstances, further complicating the overall picture. Therefore, the dichotomy of type 1 and type 2 cytokines inhibiting and promoting tumours respectively is not concrete, and attempts of utilising these for cancer immunotherapy must take into account all available evidence. This review provides an overview summarising the current understanding of type 1 and type 2 cytokines in tumour immunity and discusses the prospects of harnessing these for immunotherapy in light of previous and ongoing clinical trials.

9.
Eur J Orthop Surg Traumatol ; 33(2): 393-400, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35031854

RESUMO

PURPOSE: Open talus fractures are notoriously difficult to manage, and they are commonly associated with a high level of complications including non-union, avascular necrosis and infection. Currently, the management of such injuries is based upon BOAST 4 guidelines although there is no suggested definitive management, and thus, definitive management is based upon surgeon preference. The key principles of open talus fracture management which do not vary between surgeons are early debridement, orthoplastic wound care, anatomic reduction and definitive fixation whenever possible. However, there is much debate over whether the talus should be preserved or removed after open talus fracture/dislocation and proceeded to tibiocalcaneal fusion. METHODS: A review of electronic hospital records for open talus fractures from 2014 to 2021 returned fourteen patients with fifteen open talus fractures. Seven cases were initially managed with ORIF, and five cases were definitively managed with FUSION, while the others were managed with alternative methods. We collected patient's age, gender, surgical complications, surgical risk factors and post-treatment functional ability and pain and compliance with BOAST guidelines. The average follow-up of the cohort was 4 years and one month. EQ-5D-5L and FAAM-ADL/Sports score was used as a patient reported outcome measure. Data were analysed using the software PRISM. RESULTS: Comparison between FUSION and ORIF groups showed no statistically significant difference in EQ-5D-5L score (P = 0.13), FAAM-ADL (P = 0.20), FAAM-Sport (P = 0.34), infection rate (P = 0.55), surgical times (P = 0.91) and time to weight bearing (P = 0.39), despite a higher proportion of polytrauma and Hawkins III and IV fractures in the FUSION group. CONCLUSION: FUSION is typically used as second line to ORIF or failed ORIF. However, there is a lack of studies that directly compared outcome in open talus fracture patients definitively managed with FUSION or ORIF. Our results demonstrate for the first time that FUSION may not be inferior to ORIF in terms of patient functional outcome, infection rate and quality of life, in the management of patients with open talus fracture patients. Of note, as open talus fractures have increased risks of complications such as osteonecrosis and non-union, FUSION should be considered as a viable option to mitigate these potential complications in these patients.


Assuntos
Fraturas do Tornozelo , Fraturas Ósseas , Fraturas Expostas , Luxações Articulares , Tálus , Humanos , Fraturas do Tornozelo/cirurgia , Estudos de Coortes , Fixação Interna de Fraturas/efeitos adversos , Fixação Interna de Fraturas/métodos , Fraturas Ósseas/cirurgia , Fraturas Expostas/cirurgia , Qualidade de Vida , Estudos Retrospectivos , Tálus/cirurgia , Centros de Traumatologia , Resultado do Tratamento
10.
Front Immunol ; 13: 981479, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263033

RESUMO

Colorectal cancer (CRC) is the second leading cause of cancer-related death worldwide, and is largely refractory to current immunotherapeutic interventions. The lack of efficacy of existing cancer immunotherapies in CRC reflects the complex nature of the unique intestinal immune environment, which serves to maintain barrier integrity against pathogens and harmful environmental stimuli while sustaining host-microbe symbiosis during homeostasis. With their expression by barrier epithelial cells, the cytokines interleukin-25 (IL-25) and IL-33 play key roles in intestinal immune responses, and have been associated with inappropriate allergic reactions, autoimmune diseases and cancer pathology. Studies in the past decade have begun to uncover the important roles of IL-25 and IL-33 in shaping the CRC tumour immune microenvironment, where they may promote or inhibit tumorigenesis depending on the specific CRC subtype. Notably, both IL-25 and IL-33 have been shown to act on group 2 innate lymphoid cells (ILC2s), but can also stimulate an array of other innate and adaptive immune cell types. Though sometimes their functions can overlap they can also produce distinct phenotypes dependent on the differential distribution of their receptor expression. Furthermore, both IL-25 and IL-33 modulate pathways previously known to contribute to CRC tumorigenesis, including angiogenesis, tumour stemness, invasion and metastasis. Here, we review our current understanding of IL-25 and IL-33 in CRC tumorigenesis, with specific focus on dissecting their individual function in the context of distinct subtypes of CRC, and the potential prospects for targeting these pathways in CRC immunotherapy.


Assuntos
Neoplasias Colorretais , Interleucina-33 , Humanos , Interleucina-17/metabolismo , Imunidade Inata , Neoplasias Colorretais/metabolismo , Linfócitos/metabolismo , Carcinogênese , Transformação Celular Neoplásica/genética , Citocinas , Microambiente Tumoral
11.
Sci Immunol ; 7(72): eabn0175, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35658010

RESUMO

Interleukin-25 (IL-25) and group 2 innate lymphoid cells (ILC2s) defend the host against intestinal helminth infection and are associated with inappropriate allergic reactions. IL-33-activated ILC2s were previously found to augment protective tissue-specific pancreatic cancer immunity. Here, we showed that intestinal IL-25-activated ILC2s created an innate cancer-permissive microenvironment. Colorectal cancer (CRC) patients with higher tumor IL25 expression had reduced survival and increased IL-25R-expressing tumor-resident ILC2s and myeloid-derived suppressor cells (MDSCs) associated with impaired antitumor responses. Ablation of IL-25 signaling reduced tumors, virtually doubling life expectancy in an Apc mutation-driven model of spontaneous intestinal tumorigenesis. Mechanistically, IL-25 promoted intratumoral ILC2s, which sustained tumor-infiltrating MDSCs to suppress antitumor immunity. Therapeutic antibody-mediated blockade of IL-25 signaling decreased intratumoral ILC2s, MDSCs, and adenoma/adenocarcinoma while increasing antitumor adaptive T cell and interferon-γ (IFN-γ)-mediated immunity. Thus, the roles of innate epithelium-derived cytokines IL-25 and IL-33 as well as ILC2s in cancer cannot be generalized. The protumoral nature of the IL-25-ILC2 axis in CRC highlights this pathway as a potential therapeutic target against CRC.


Assuntos
Proteína da Polipose Adenomatosa do Colo/genética , Interleucina-33 , Células Supressoras Mieloides , Carcinogênese , Humanos , Imunidade Inata , Interleucina-17 , Interleucina-33/genética , Linfócitos , Mutação , Microambiente Tumoral
12.
Eur J Orthop Surg Traumatol ; 32(7): 1225-1235, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34468841

RESUMO

PURPOSE: There are growing concerns with the widely used glucocorticoids during the Coronavirus disease-19 (COVID-19) pandemic due to the associated immunosuppressive effects, which may increase the risk of COVID-19 infection and worsen COVID-19 patient outcome. Heavily affecting orthopaedics, the pandemic led to delay and cancellation of almost all surgical cases, and procedures including perioperative intra-articular corticosteroid injections (ICIs) saw similar decreases. However, the benefits of ICI treatments during the pandemic may outweigh these potential risks, and their continued use may be warranted. METHODS: A literature search was conducted, and all relevant articles including original articles and reviews were identified and considered in full for inclusion, and analysed with expert opinion. Epidemiological statistics and medical guidelines were consulted from relevant authorities. RESULTS: ICIs allow a targeted approach on the affected joint and are effective in reducing pain while improving functional outcome and patient quality-of-life. ICIs delay the requirement for surgery, accommodating for the increased healthcare burden during the pandemic, while reducing postoperative hospital stay, bringing significant financial benefits. However, ICIs can exert systemic effects and suppress the immune system. ICIs may increase the risk of COVID-19 infection and reduce the efficacy of COVID-19 vaccinations, leading to important public health implications. CONCLUSION: Perioperative ICI treatments may bring significant, multifaceted benefits during the pandemic. However, ICIs increase the risk of infection, and perioperative COVID-19 is associated with mortality. The use of ICIs during the COVID-19 pandemic should therefore be considered carefully on an individual patient basis, weighing the associated risks and benefits.


Assuntos
COVID-19 , Ortopedia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Esteroides
13.
Cell Rep ; 24(6): 1434-1444.e7, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30089255

RESUMO

RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1-6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Fusão Gênica/genética , Neoplasias da Mama/patologia , Feminino , Humanos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA