Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 289(19): 5914-5932, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35429212

RESUMO

Interleukin-6 (IL-6) is involved in many inflammatory diseases. IL-6 binds to membrane-bound IL-6 receptor α (IL-6Rα) (classic signaling) or soluble IL-6Rα (trans-signaling); this complex then associates with the signal-transducing membrane protein gp130. IL-6Rα and gp130 float on membrane (i.e., lipid) rafts; however, how membrane rafts regulate IL-6 signaling remains unclear. Here, we demonstrate that both IL-6 classic signaling and trans-signaling depend on membrane cholesterol, an essential raft component. Super-resolution fluorescence imaging using perfringolysin O D4 fragments that selectively bind to high cholesterol concentrations revealed that IL-6 and hyper-IL-6, a fusion protein of IL-6 and soluble IL-6Rα, induce the alteration of membrane rafts. IL-6 and hyper-IL-6 induced D4-positive raft (D4 raft) formation without affecting cholera toxin subunit B (CTB)-positive rafts (CTB rafts). Receptor clustering of IL-6Rα and gp130 and STAT3 phosphorylation occurred in D4 rafts. These results indicate that D4 rafts serve as platforms for the assembly of functional IL-6 receptor complexes. We found that Eps15 homology domain-containing protein 1 (EHD1) mediates the formation of functional IL-6 receptor complexes through D4 rafts. Overall, we uncover a novel regulatory mechanism of the EHD1-mediated alteration of membrane raft in IL-6 signaling.


Assuntos
Toxina da Cólera , Interleucina-6 , Toxina da Cólera/metabolismo , Colesterol/metabolismo , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Interleucina-6/genética , Receptores de Interleucina-6/metabolismo
2.
Acta Neuropathol Commun ; 7(1): 149, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530290

RESUMO

Multifunctional signal transducer and activator of transcription (STAT) proteins play important roles in cancer. Here, we have shown that STAT6 is epigenetically silenced in some cases of malignant glioblastoma, which facilitates cancer cell survival in a hypoxic microenvironment. This downregulation results from hypermethylation of CpG islands within the STAT6 promoter by DNA methyltransferases. STAT6 interacts with Rheb under hypoxia and inhibits mTOR/S6K/S6 signaling, in turn, inducing increased HIF-1α translation. STAT6 silencing and consequent tumor-promoting effects are additionally observed in glioma stem-like cells (GSC). Despite recent advances in cancer treatment, survival rates have shown little improvement. This is particularly true in the case of glioma, where multimodal treatment and precision medicine is needed. Our study supports the application of epigenetic restoration of STAT6 with the aid of DNA methyltransferase inhibitors, such as 5-aza-2-deoxycytidine, for treatment of STAT6-silenced gliomas.


Assuntos
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fator de Transcrição STAT6/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA , Regulação para Baixo , Humanos , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Hipóxia Tumoral
3.
Neurobiol Dis ; 127: 482-491, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30954702

RESUMO

Dysfunctional regulation of inflammation may contribute to the progression of neurodegenerative diseases. The results of this study revealed that DJ-1, a Parkinson's disease (PD) gene, regulated expression of prostaglandin D2 synthase (PTGDS) and production of prostaglandin D2 (PGD2), by which DJ-1 enhanced anti-inflammatory function of astrocytes. In injured DJ-1 knockout (KO) brain, expression of tumor necrosis factor-alpha (TNF-α) was more increased, but that of anti-inflammatory heme oxygenase-1 (HO-1) was less increased compared with that in injured wild-type (WT) brain. Similarly, astrocyte-conditioned media (ACM) prepared from DJ-1-KO astrocytes less induced HO-1 expression and less inhibited expression of inflammatory mediators in microglia. With respect to the underlying mechanism, we found that PTGDS that induced expression of HO-1 was lower in DJ-1 KO astrocytes and brains compared with their WT counterparts. In addition, PTGDS levels increased in the injured brain of WT mice, but barely in that of KO mice. We also found that DJ-1 regulated PTGDS expression through Sox9. Thus, Sox9 siRNAs reduced PTGDS expression in WT astrocytes, and Sox9 overexpression rescued PTGDS expression in DJ-1 KO astrocytes. In agreement with these results, ACM from Sox9 siRNA-treated astrocytes and that from Sox9-overexpression astrocytes exerted opposite effects on HO-1 expression and anti-inflammation. These findings suggest that DJ-1 positively regulates anti-inflammatory functions of astrocytes, and that DJ-1 dysfunction contributes to the excessive inflammatory response in PD development.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Regulação da Expressão Gênica , Inflamação/genética , Oxirredutases Intramoleculares/genética , Lipocalinas/genética , Proteína Desglicase DJ-1/genética , Animais , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Inflamação/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lipocalinas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Proteína Desglicase DJ-1/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
4.
J Cell Mol Med ; 22(9): 4117-4129, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29851245

RESUMO

Phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family members generate phosphatidylinositol 4,5-bisphosphate (PIP2), a critical lipid regulator of diverse physiological processes. The PIP5K-dependent PIP2 generation can also act upstream of the oncogenic phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Many studies have demonstrated various mechanisms of spatiotemporal regulation of PIP5K catalytic activity. However, there are few studies on regulation of PIP5K protein stability. Here, we examined potential regulation of PIP5Kα, a PIP5K isoform, via ubiquitin-proteasome system, and its implication for breast cancer. Our results showed that the ubiquitin ligase NEDD4 (neural precursor cell expressed, developmentally down-regulated gene 4) mediated ubiquitination and proteasomal degradation of PIP5Kα, consequently reducing plasma membrane PIP2 level. NEDD4 interacted with the C-terminal region and ubiquitinated the N-terminal lysine 88 in PIP5Kα. In addition, PIP5Kα gene disruption inhibited epidermal growth factor (EGF)-induced Akt activation and caused significant proliferation defect in breast cancer cells. Notably, PIP5Kα K88R mutant that was resistant to NEDD4-mediated ubiquitination and degradation showed more potentiating effects on Akt activation by EGF and cell proliferation than wild-type PIP5Kα. Collectively, these results suggest that PIP5Kα is a novel degradative substrate of NEDD4 and that the PIP5Kα-dependent PIP2 pool contributing to breast cancer cell proliferation through PI3K/Akt activation is negatively controlled by NEDD4.


Assuntos
Membrana Celular/metabolismo , Regulação Neoplásica da Expressão Gênica , Ubiquitina-Proteína Ligases Nedd4/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Proliferação de Células , Fator de Crescimento Epidérmico/farmacologia , Feminino , Edição de Genes , Humanos , Mutação , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais , Ubiquitinação/efeitos dos fármacos
5.
Cell Rep ; 22(1): 136-148, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29298416

RESUMO

Recent evidence of prion-like propagation of α-synuclein (α-syn) into neighboring neurons set up a paradigm to elucidate the mechanism of progression of Parkinson's disease (PD) and to develop therapeutic strategies. Here, we show that FcγRIIB expressed in neurons functions as a receptor for α-syn fibrils and mediates cell-to-cell transmission of α-syn. SHP-1 and 2 are activated downstream by α-syn fibrils through FcγRIIB and play an important role in cell-to-cell transmission of α-syn. Also, taking advantage of a co-culture system, we show that cell-to-cell transmission of α-syn induces intracellular Lewy body-like inclusion body formation and that the FcγRIIB/SHP-1/2 signaling pathway is involved in it. Therefore, the FcγRIIB-SHP-1/-2 signaling pathway may be a therapeutic target for the progression of PD. The in vitro system is an efficient tool for further high-throughput screening that can be used for developing a therapeutic intervention in PD.


Assuntos
Neurônios/metabolismo , Doença de Parkinson/metabolismo , Príons , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de IgG/metabolismo , Transdução de Sinais , alfa-Sinucleína/metabolismo , Linhagem Celular , Humanos , Neurônios/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transporte Proteico/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Receptores de IgG/genética , alfa-Sinucleína/genética
6.
Cell Signal ; 38: 159-170, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28711717

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PIP2) is an important lipid regulator of membrane signaling and remodeling processes. Accumulating evidence indicates a link between PIP2 metabolism and Toll-like receptor (TLR) signaling, a key transducer of immune responses such as inflammation, phagocytosis, and autophagy. Microglia are immune effector cells that serve as macrophages in the brain. Here, we examined the potential role of phosphatidylinositol 4-phosphate 5-kinase α (PIP5Kα), a PIP2-producing enzyme, in TLR2 signaling in microglial cells. Treatment of BV2 microglial cells with lipoteichoic acid (LTA), a TLR2 agonist, increased PIP5Kα expression in BV2 and primary microglial cells, but not in primary cultures from TLR2-deficient mice. PIP5Kα knockdown of BV2 cells with shRNA significantly suppressed LTA-induced activation of TLR2 downstream signaling, including the production of proinflammatory cytokines and phosphorylation of NF-κB, JNK, and p38 MAP kinase. Such suppression was reversed by complementation of PIP5Kα. PIP5Kα knockdown lowered PIP2 levels and impaired LTA-induced plasma membrane targeting of TIRAP, a PIP2-dependent adaptor required for TLR2 activation. Besides, PIP5Kα knockdown inhibited phagocytic uptake of E. coli particles and autophagy-related vesicle formation triggered by LTA. Taken together, these results support that PIP5Kα can positively mediate TLR2-associated immune responses through PIP2 production in microglial cells.


Assuntos
Imunidade/efeitos dos fármacos , Microglia/enzimologia , Microglia/imunologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Receptor 2 Toll-Like/metabolismo , Actinas/metabolismo , Animais , Autofagia/efeitos dos fármacos , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Regulação para Baixo/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fagocitose/efeitos dos fármacos , Fosfatos de Fosfatidilinositol/metabolismo , Polimerização/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ácidos Teicoicos , Regulação para Cima/efeitos dos fármacos
7.
Biochim Biophys Acta ; 1859(8): 1056-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27206966

RESUMO

MAP kinase phosphatase (MKP)-1 plays a pivotal role in controlling MAP kinase (MAPK)-dependent (patho) physiological processes. Although MKP-1 gene expression is tightly regulated at multiple levels, the underlying mechanistic details remain largely unknown. In this study, we demonstrate that MKP-1 expression is regulated at the post-transcriptional level by 22(R)-hydroxycholesterol [22(R)-HC] through a novel mechanism. 22(R)-HC induces Hu antigen R (HuR) phosphorylation, cytoplasmic translocation and binding to MKP-1 mRNA, resulting in stabilization of MKP-1 mRNA. The resulting increase in MKP-1 leads to suppression of JNK-mediated inflammatory responses in brain astrocytes. We further demonstrate that 22(R)-HC-induced phosphorylation of nuclear HuR is mediated by PKCα, which is activated in the cytosol by increases in intracellular Ca(2+) levels mediated by the phospholipase C/inositol 1,4,5-triphosphate receptor (PLC/IP3R) pathway and translocates from cytoplasm to nucleus. In addition, pharmacological interventions reveal that metabotropic glutamate receptor5 (mGluR5) is responsible for the increases in intracellular Ca(2+) that underlie these actions of 22(R)-HC. Collectively, our findings identify a novel anti-inflammatory mechanism of 22(R)-HC, which acts through PKCα-mediated cytoplasmic shuttling of HuR to post-transcriptionally regulate MKP-1 expression. These findings provide an experimental basis for the development of a RNA-targeted therapeutic agent to control MAPK-dependent inflammatory responses.


Assuntos
Astrócitos/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Proteína Semelhante a ELAV 1/genética , Hidroxicolesteróis/farmacologia , Proteína Quinase C-alfa/genética , RNA Mensageiro/genética , Receptor de Glutamato Metabotrópico 5/genética , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/metabolismo , Fosfatase 1 de Especificidade Dupla/metabolismo , Proteína Semelhante a ELAV 1/agonistas , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Proteína Quinase C-alfa/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ratos , Receptor de Glutamato Metabotrópico 5/metabolismo , Transdução de Sinais , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo
8.
Exp Neurobiol ; 25(1): 14-23, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26924929

RESUMO

PTEN-induced putative kinase 1 (PINK1) is a Parkinson's disease (PD) gene. We examined miRNAs regulated by PINK1 during brain development and neural stem cell (NSC) differentiation, and found that lvels of miRNAs related to tumors and inflammation were different between 1-day-old-wild type (WT) and PINK1-knockout (KO) mouse brains. Notably, levels of miR-326, miR-330 and miR-3099, which are related to astroglioma, increased during brain development and NSC differentiation, and were significantly reduced in the absence of PINK1. Interestingly, in the presence of ciliary neurotrophic factor (CNTF), which pushes differentiation of NSCs into astrocytes, miR-326, miR-330, and miR-3099 levels in KO NSCs were also lower than those in WT NSCs. Furthermore, mimics of all three miRNAs increased expression of the astrocytic marker glial fibrillary acidic protein (GFAP) during differentiation of KO NSCs, but inhibitors of these miRNAs decreased GFAP expression in WT NSCs. Moreover, these miRNAs increased the translational efficacy of GFAP through the 3'-UTR of GFAP mRNA. Taken together, these results suggest that PINK1 deficiency reduce expression levels of miR-326, miR-330 and miR-3099, which may regulate GFAP expression during NSC differentiation and brain development.

9.
Neurobiol Dis ; 83: 90-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342897

RESUMO

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. Although the etiology of PD has not yet been fully understood, accumulating evidence indicates that neuroinflammation plays a critical role in the progression of PD. α-Synuclein (α-Syn) has been considered to be a key player of the pathogenesis of PD, and recent reports that prion-like propagation of misfolded α-syn released from neurons may play an important role in the progression of PD have led to increased attention to the studies elucidating the roles of extracellular α-syn in the CNS. Extracellular α-syn has also been reported to regulate microglial inflammatory response. In this study, we demonstrated that aggregated α-syn inhibited microglial phagocytosis by activating SHP-1. SHP-1 activation was also observed in A53T α-syn transgenic mice. In addition, aggregated α-syn bound to FcγRIIB on microglia, inducing SHP-1 activation, further inhibiting microglial phagocytosis. Aggregated α-syn upregulated FcγRIIB expression in microglia and upregulated FcγRIIB was also observed in A53T α-syn transgenic mice. These data suggest that aggregated α-syn released from neurons dysregulates microglial immune response through inhibiting microglial phagocytosis, further causing neurodegeneration observed in PD. The interaction of aggregated α-syn and FcγRIIB and further SHP-1 activation can be a new therapeutic target against PD.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Microglia/fisiologia , Fagocitose , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Receptores de IgG/metabolismo , alfa-Sinucleína/metabolismo , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Agregados Proteicos/fisiologia , Ratos , Ratos Sprague-Dawley
10.
Biochim Biophys Acta ; 1853(10 Pt A): 2432-43, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26149501

RESUMO

The type I phosphatidylinositol 4-phosphate 5-kinase (PIP5K) family members and their lipid product, phosphatidylinositol 4,5-bisphosphate (PIP2) are important regulators of actin cytoskeleton. PIP5Kγ 90kDa (PIP5Kγ90), an isoform of PIP5K, localizes to focal adhesions (FAs) and is activated via its interaction with the cytoskeletal protein, talin. Currently, regulatory signaling pathways of talin-PIP5Kγ90 interaction related to FA dynamics and cell motility are not well understood. Considering the presence of Akt consensus motifs in PIP5Kγ90, we examined a potential link of Akt activation to talin-PIP5Kγ90 interaction. We found that Akt phosphorylated PIP5Kγ90 specifically at serine 555 (S555) in vitro and in epidermal growth factor (EGF)-treated cells phosphoinositide 3-kinase-dependently. EGF treatment suppressed talin-PIP5Kγ90 interaction and PIP2 levels. Similarly, a phosphomimetic mutant (S555D), but not non-phosphorylatable mutant (S555A), of PIP5Kγ90 had reduced talin binding affinity, lowered PIP2 levels, and was dislocated from FAs. The S555D mutant also caused decreases in actin stress fibers and vinculin-positive FAs. Moreover, assembly and disassembly of FAs were enhanced by S555D expression and EGF-induced cell migration was relatively low in S555A-expressing cells compared to wild-type-expressing cells. PIP5Kγ87, a PIP5Kγ splice variant lacking the talin binding motif, was phosphorylated by Akt, which, however, hardly affected PIP2 levels. Taken together, our results suggested that Akt-mediated PIP5Kγ90 S555 phosphorylation is a novel regulatory point for talin binding to control PIP2 level at the FAs, thereby modulating FA dynamics and cell motility.


Assuntos
Processamento Alternativo/fisiologia , Movimento Celular/fisiologia , Adesões Focais/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Talina/metabolismo , Substituição de Aminoácidos , Adesões Focais/genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Proto-Oncogênicas c-akt/genética , Talina/genética
11.
Biochim Biophys Acta ; 1849(6): 612-25, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25805336

RESUMO

In the present study, we demonstrate a mechanism through which 15-deoxy-Δ(12,14)-prostaglandin J2 (15d-PGJ2) induces MKP-1 expression in rat primary astrocytes, leading to the regulation of inflammatory responses. We show that 15d-PGJ2 enhances the efficiency of MKP-1 pre-mRNA processing (constitutive splicing and 3'-end processing) and increases the stability of the mature mRNA. We further report that this occurs via the RNA-binding protein, Hu antigen R (HuR). Our experiments show that HuR knockdown abrogates the 15d-PGJ2-induced increases in the pre-mRNA processing and mature mRNA stability of MKP-1, whereas HuR overexpression further enhances the 15d-PGJ2-induced increases in these parameters. Using cysteine (Cys)-mutated HuR proteins, we show that the Cys-245 residue of HuR (but not Cys-13 or Cys-284) is critical for the direct binding of HuR with 15d-PGJ2 and the effects downstream of this interaction. Collectively, our data show that HuR is a novel target of 15d-PGJ2 and reveal HuR-mediated pre-mRNA processing and mature mRNA stabilization as important regulatory steps in the 15d-PGJ2-induced expression of MKP-1. The potential to use a small molecule such as 15d-PGJ2 to regulate the induction of MKP-1 at multiple levels of gene expression could be exploited as a novel therapeutic strategy aimed at combating a diverse range of MKP-1-associated pathologies.


Assuntos
Fosfatase 1 de Especificidade Dupla/genética , Proteínas ELAV/genética , Inflamação/genética , Prostaglandina D2/análogos & derivados , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Fosfatase 1 de Especificidade Dupla/biossíntese , Proteínas ELAV/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/patologia , Cultura Primária de Células , Prostaglandina D2/administração & dosagem , Prostaglandina D2/metabolismo , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , Ratos
12.
Proc Natl Acad Sci U S A ; 111(27): 9911-6, 2014 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-24958862

RESUMO

Noise-induced hearing loss is one of the most common types of sensorineural hearing loss. In this study, we examined the expression and localization of leukotriene receptors and their respective changes in the cochlea after hazardous noise exposure. We found that the expression of cysteinyl leukotriene type 1 receptor (CysLTR1) was increased until 3 d after noise exposure and enhanced CysLTR1 expression was mainly observed in the spiral ligament and the organ of Corti. Expression of 5-lipoxygenase was increased similar to that of CysLTR1, and there was an accompanying elevation of CysLT concentration. Posttreatment with leukotriene receptor antagonist (LTRA), montelukast, for 4 consecutive days after noise exposure significantly decreased the permanent threshold shift and also reduced the hair cell death in the cochlea. Using RNA-sequencing, we found that the expression of matrix metalloproteinase-3 (MMP-3) was up-regulated after noise exposure, and it was significantly inhibited by montelukast. Posttreatment with a MMP-3 inhibitor also protected the hair cells and reduced the permanent threshold shift. These findings suggest that acoustic injury up-regulated CysLT signaling in the cochlea and cochlear injury could be attenuated by LTRA through regulation of MMP-3 expression. This study provides mechanistic insights into the role of CysLTs signaling in noise-induced hearing loss and the therapeutic benefit of LTRA.


Assuntos
Cóclea/lesões , Cisteína/metabolismo , Modelos Animais de Doenças , Leucotrienos/metabolismo , Ruído/efeitos adversos , Transdução de Sinais , Acetatos/uso terapêutico , Animais , Ciclopropanos , Perfilação da Expressão Gênica , Antagonistas de Leucotrienos/uso terapêutico , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Quinolinas/uso terapêutico , Receptores de Leucotrienos/efeitos dos fármacos , Sulfetos , Ferimentos e Lesões/tratamento farmacológico , Ferimentos e Lesões/etiologia
13.
Pigment Cell Melanoma Res ; 27(2): 201-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24267286

RESUMO

Inflammatory cytokines are closely related to pigmentary changes. In this study, the effects of IFN-γ on melanogenesis were investigated. IFN-γ inhibits basal and α-MSH-induced melanogenesis in B16 melanoma cells and normal human melanocytes. MITF mRNA and protein expressions were significantly inhibited in response to IFN-γ. IFN-γ inhibited CREB binding to the MITF promoter but did not affect CREB phosphorylation. Instead, IFN-γ inhibited the association of CBP and CREB through the increased association between CREB binding protein (CBP) and STAT1. These findings suggest that IFN-γ inhibits both basal and α-MSH-induced melanogenesis by inhibiting MITF expression. The inhibitory action of IFN-γ in α-MSH-induced melanogenesis is likely to be associated with the sequestration of CBP via the association between CBP and STAT1. These data suggest that IFN-γ plays a role in controlling inflammation- or UV-induced pigmentary changes.


Assuntos
Interferon gama/farmacologia , Melaninas/biossíntese , alfa-MSH/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/enzimologia , Melanoma Experimental/enzimologia , Melanoma Experimental/patologia , Proteínas de Membrana/metabolismo , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , Fosfoproteínas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Fator de Transcrição STAT1/metabolismo
14.
Neurobiol Dis ; 60: 1-10, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23969237

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative movement disorder caused by the death of dopaminergic neurons in the substantia nigra. Importantly, altered astrocyte and microglial functions could contribute to neuronal death in PD. In this study, we demonstrate a novel mechanism by which DJ-1 (PARK7), an early onset autosomal-recessive PD gene, negatively regulates inflammatory responses of astrocytes and microglia by facilitating the interaction between STAT1 and its phosphatase, SHP-1 (Src-homology 2-domain containing protein tyrosine phosphatase-1). Astrocytes and microglia cultured from DJ-1-knockout (KO) mice exhibited increased expression of inflammatory mediators and phosphorylation levels of STAT1 (p-STAT1) in response to interferon-gamma (IFN-γ) compared to cells from wild-type (WT) mice. DJ-1 deficiency also attenuated IFN-γ-induced interactions of SHP-1 with p-STAT1 and STAT1, measured 1 and 12h after IFN-γ treatment, respectively. Subsequent experiments showed that DJ-1 directly interacts with SHP-1, p-STAT1, and STAT1. Notably, DJ-1 bound to SHP-1 independently of IFN-γ, whereas the interactions of DJ-1 with p-STAT1 and STAT1 were dependent on IFN-γ. Similar results were obtained in brain slice cultures, where IFN-γ induced much stronger STAT1 phosphorylation and inflammatory responses in KO slices than in WT slices. Moreover, IFN-γ treatment induced neuronal damage in KO slices. Collectively, these findings suggest that DJ-1 may function as a scaffold protein that facilitates SHP-1 interactions with p-STAT1 and STAT1, thereby preventing extensive and prolonged STAT1 activation. Thus, the loss of DJ-1 function may increase the risk of PD by enhancing brain inflammation.


Assuntos
Astrócitos/metabolismo , Microglia/metabolismo , Proteínas Oncogênicas/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT1/metabolismo , Animais , Anti-Inflamatórios/metabolismo , Encéfalo/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Knockout , Peroxirredoxinas , Fosforilação , Proteína Desglicase DJ-1
15.
Hum Mol Genet ; 22(23): 4805-17, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23847046

RESUMO

Parkinson's disease (PD) is the second most common progressive neurodegenerative disease. Several genes have been associated with familial type PD, providing tremendous insights into the pathogenesis of PD. Gathering evidence supports the view that these gene products may operate through common molecular pathways. Recent reports suggest that many PD-associated gene products, such as α-synuclein, LRRK2, parkin and PINK1, associate with lipid rafts and lipid rafts may be associated with neurodegeneration. Here, we observed that DJ-1 protein also associated with lipid rafts. Palmitoylation of three cysteine residues (C46/53/106) and C-terminal region of DJ-1 were required for this association. Lipopolysaccharide (LPS) induced the localization of DJ-1 into lipid rafts in astrocytes. The LPS-TLR4 signaling was more augmented in DJ-1 knock-out astrocytes by the impairment of TLR4 endocytosis. Furthermore, lipid rafts-dependent endocytosis including the endocytosis of CD14, which play a major role in regulating TLR4 endocytosis was also impaired, but clathrin-dependent endocytosis was not. This study provides a novel function of DJ-1 in lipid rafts, which may contribute the pathogenesis of PD. Moreover, it also provides the possibility that many PD-related proteins may operate through common molecular pathways in lipid rafts.


Assuntos
Astrócitos/fisiologia , Endocitose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microdomínios da Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Oncogênicas/metabolismo , Doença de Parkinson/fisiopatologia , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Cisteína/metabolismo , Humanos , Lipopolissacarídeos/fisiologia , Lipoilação , Camundongos Knockout , Doença de Parkinson/metabolismo , Peroxirredoxinas , Proteína Desglicase DJ-1 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Receptores Toll-Like/fisiologia
16.
Exp Neurobiol ; 22(1): 38-44, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23585721

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative motor disease caused by degeneration of dopaminergic neurons in the substantia nigra. Because brain inflammation has been considered a risk factor for PD, we analyzed whether PTEN induced putative kinase 1 (PINK1), an autosomal recessive familial PD gene, regulates brain inflammation during injury states. Using acutely prepared cortical slices to mimic injury, we analyzed expression of the pro-inflammatory cytokines tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6 at the mRNA and protein levels. Both mRNA and protein expression of these cytokines was higher at 6-24 h after slicing in PINK1 knockout (KO) slices compared to that in wild-type (WT) slices. In serial experiments to understand the signaling pathways that increase inflammatory responses in KO slices, we found that IκB degradation was enhanced but Akt phosphorylation decreased in KO slices compared to those in WT slices. In further experiments, an inhibitor of PI3K (LY294002) upstream of Akt increased expression of pro-inflammatory cytokines. Taken together, these results suggest that PINK1 deficiency enhance brain inflammation through reduced Akt activation and enhanced IκB degradation in response to brain injury.

17.
Glia ; 61(5): 800-12, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23440919

RESUMO

PINK1 (PTEN induced putative kinase 1), a familial Parkinson's disease (PD)-related gene, is expressed in astrocytes, but little is known about its role in this cell type. Here, we found that astrocytes cultured from PINK1-knockout (KO) mice exhibit defective proliferative responses to epidermal growth factor (EGF) and fetal bovine serum. In PINK1-KO astrocytes, basal and EGF-induced p38 activation (phosphorylation) were increased whereas EGF receptor (EGFR) expression and AKT activation were decreased. p38 inhibition (SB203580) or knockdown with small interfering RNA (siRNA) rescued EGFR expression and AKT activation in PINK1-KO astrocytes. Proliferation defects in PINK1-KO astrocytes appeared to be linked to mitochondrial defects, manifesting as decreased mitochondrial mass and membrane potential, increased intracellular reactive oxygen species level, decreased glucose-uptake capacity, and decreased ATP production. Mitochondrial toxin (oligomycin) and a glucose-uptake inhibitor (phloretin) mimicked the PINK1-deficiency phenotype, decreasing astrocyte proliferation, EGFR expression and AKT activation, and increasing p38 activation. In addition, the proliferation defect in PINK1-KO astrocytes resulted in a delay in the wound healing process. Taken together, these results suggest that PINK1 deficiency causes astrocytes dysfunction, which may contribute to the development of PD due to delayed astrocytes-mediated repair of microenvironment in the brain.


Assuntos
Astrócitos/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Mitocôndrias/metabolismo , Proteínas Quinases/deficiência , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/biossíntese , Animais , Astrócitos/patologia , Bovinos , Proliferação de Células , Células Cultivadas , Regulação para Baixo/genética , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Regulação para Cima/genética
18.
PLoS One ; 7(4): e34693, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22496842

RESUMO

LRRK2, a Parkinson's disease associated gene, is highly expressed in microglia in addition to neurons; however, its function in microglia has not been evaluated. Using Lrrk2 knockdown (Lrrk2-KD) murine microglia prepared by lentiviral-mediated transfer of Lrrk2-specific small inhibitory hairpin RNA (shRNA), we found that Lrrk2 deficiency attenuated lipopolysaccharide (LPS)-induced mRNA and/or protein expression of inducible nitric oxide synthase, TNF-α, IL-1ß and IL-6. LPS-induced phosphorylation of p38 mitogen-activated protein kinase and stimulation of NF-κB-responsive luciferase reporter activity was also decreased in Lrrk2-KD cells. Interestingly, the decrease in NF-κB transcriptional activity measured by luciferase assays appeared to reflect increased binding of the inhibitory NF-κB homodimer, p50/p50, to DNA. In LPS-responsive HEK293T cells, overexpression of the human LRRK2 pathologic, kinase-active mutant G2019S increased basal and LPS-induced levels of phosphorylated p38 and JNK, whereas wild-type and other pathologic (R1441C and G2385R) or artificial kinase-dead (D1994A) LRRK2 mutants either enhanced or did not change basal and LPS-induced p38 and JNK phosphorylation levels. However, wild-type LRRK2 and all LRRK2 mutant variants equally enhanced NF-κB transcriptional activity. Taken together, these results suggest that LRRK2 is a positive regulator of inflammation in murine microglia, and LRRK2 mutations may alter the microenvironment of the brain to favor neuroinflammation.


Assuntos
Encéfalo/metabolismo , Encefalite/metabolismo , Microglia/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Técnicas de Silenciamento de Genes , Interleucina-1beta/biossíntese , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase 4/metabolismo , Camundongos , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Fator de Necrose Tumoral alfa/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
19.
J Neuroinflammation ; 9: 34, 2012 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-22339770

RESUMO

BACKGROUND: The peroxisome proliferator-activated receptor (PPAR)-α activator, 5,8,11,14-eicosatetraynoic acid (ETYA), is an arachidonic acid analog. It is reported to inhibit up-regulation of pro-inflammatory genes; however, its underlying mechanism of action is largely unknown. In the present study, we focused on the inhibitory action of ETYA on the expression of the chemokine, CCL2/MCP-1, which plays a key role in the initiation and progression of inflammation. METHODS: To determine the effect of ETYA, primary cultured rat astrocytes and microglia were stimulated with IFN-γ in the presence of ETYA and then, expression of CCL2/MCP-1 and MAPK phosphatase (MKP-1) were determined using RT-PCR and ELISA. MKP-1 mRNA stability was evaluated by treating actinomycin D. The effect of MKP-1 and human antigen R (HuR) was analyzed by using specific siRNA transfection system. The localization of HuR was analyzed by immunocytochemistry and subcellular fractionation experiment. RESULTS: We found that ETYA suppressed CCL2/MCP-1 transcription and secretion of CCL2/MCP-1 protein through up-regulation of MKP-1mRNA levels, resulting in suppression of c-Jun N-terminal kinase (JNK) phosphorylation and activator protein 1 (AP1) activity in IFN-γ-stimulated brain glial cells. Moreover, these effects of ETYA were independent of PPAR-α. Experiments using actinomycin D revealed that the ETYA-induced increase in MKP-1 mRNA levels reflected an increase in transcript stability. Knockdown experiments using small interfering RNA demonstrated that this increase in MKP-1 mRNA stability depended on HuR, an RNA-binding protein known to promote enhanced mRNA stability. Furthermore, ETYA-induced, HuR-mediated mRNA stabilization resulted from HuR-MKP-1 nucleocytoplasmic translocation, which served to protect MKP-1 mRNA from the mRNA degradation machinery. CONCLUSION: ETYA induces MKP-1 through HuR at the post-transcriptional level in a receptor-independent manner. The mechanism revealed here suggests eicosanoids as potential therapeutic modulators of inflammation that act through a novel target.


Assuntos
Ácido 5,8,11,14-Eicosatetrainoico/farmacologia , Astrócitos/efeitos dos fármacos , Quimiocina CCL2/metabolismo , Fosfatase 1 de Especificidade Dupla/genética , Interferon gama/farmacologia , RNA Mensageiro/metabolismo , Animais , Animais Recém-Nascidos , Células Cultivadas , Córtex Cerebral/citologia , Imunoprecipitação da Cromatina , Proteínas ELAV , Ensaio de Desvio de Mobilidade Eletroforética , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática/métodos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Microglia/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Transfecção
20.
Exp Mol Med ; 43(12): 660-8, 2011 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21918362

RESUMO

Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin- 1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin- 1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.


Assuntos
Astrócitos/metabolismo , Caveolina 1/genética , Monoéster Fosfórico Hidrolases/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Caveolina 1/metabolismo , Caveolina 2/genética , Linhagem Celular , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Expressão Gênica , Humanos , Inositol Polifosfato 5-Fosfatases , Microglia/metabolismo , Fosforilação , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA