Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712243

RESUMO

CRISPR prime editing offers unprecedented versatility and precision for the installation of genetic edits in situ . Here we describe the development and characterization of the Multiplexing Of Site-specific Alterations for In situ Characterization ( MOSAIC ) method, which leverages a non-viral PCR-based prime editing method to enable rapid installation of thousands of defined edits in pooled fashion. We show that MOSAIC can be applied to perform in situ saturation mutagenesis screens of: (1) the BCR-ABL1 fusion gene, successfully identifying known and potentially new imatinib drug-resistance variants; and (2) the IRF1 untranslated region (UTR), re-confirming non-coding regulatory elements involved in transcriptional initiation. Furthermore, we deployed MOSAIC to enable high-throughput, pooled screening of hundreds of systematically designed prime editing guide RNA ( pegRNA ) constructs for a large series of different genomic loci. This rapid screening of >18,000 pegRNA designs identified optimized pegRNAs for 89 different genomic target modifications and revealed the lack of simple predictive rules for pegRNA design, reinforcing the need for experimental optimization now greatly simplified and enabled by MOSAIC. We envision that MOSAIC will accelerate and facilitate the application of CRISPR prime editing for a wide range of high-throughput screens in human and other cell systems.

2.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292647

RESUMO

Gene editing the BCL11A erythroid enhancer is a validated approach to fetal hemoglobin (HbF) induction for ß-hemoglobinopathy therapy, though heterogeneity in edit allele distribution and HbF response may impact its safety and efficacy. Here we compared combined CRISPR-Cas9 endonuclease editing of the BCL11A +58 and +55 enhancers with leading gene modification approaches under clinical investigation. We found that combined targeting of the BCL11A +58 and +55 enhancers with 3xNLS-SpCas9 and two sgRNAs resulted in superior HbF induction, including in engrafting erythroid cells from sickle cell disease (SCD) patient xenografts, attributable to simultaneous disruption of core half E-box/GATA motifs at both enhancers. We corroborated prior observations that double strand breaks (DSBs) could produce unintended on- target outcomes in hematopoietic stem and progenitor cells (HSPCs) such as long deletions and centromere-distal chromosome fragment loss. We show these unintended outcomes are a byproduct of cellular proliferation stimulated by ex vivo culture. Editing HSPCs without cytokine culture bypassed long deletion and micronuclei formation while preserving efficient on-target editing and engraftment function. These results indicate that nuclease editing of quiescent hematopoietic stem cells (HSCs) limits DSB genotoxicity while maintaining therapeutic potency and encourages efforts for in vivo delivery of nucleases to HSCs.

3.
J Clin Invest ; 133(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37183825

RESUMO

Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like mesenchymal cell state and a more differentiated sympathetic adrenergic cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional cofactor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism, G/T, that affects a GATA motif in the first intron of LMO1. Here, we showed that WT zebrafish with the GATA genotype developed adrenergic neuroblastoma, while knock-in of the protective TATA allele at this locus reduced the penetrance of MYCN-driven tumors, which were restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrated that TATA/TATA tumors also exhibited a mesenchymal cell state and were low risk at diagnosis. Thus, conversion of the regulatory GATA to a TATA allele in the first intron of LMO1 reduced the neuroblastoma-initiation rate by preventing formation of the adrenergic cell state. This mechanism was conserved over 400 million years of evolution, separating zebrafish and humans.


Assuntos
Predisposição Genética para Doença , Neuroblastoma , Animais , Criança , Humanos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Adrenérgicos , Genótipo , Neuroblastoma/patologia , Proteína Proto-Oncogênica N-Myc/genética
4.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909587

RESUMO

Childhood neuroblastomas exhibit plasticity between an undifferentiated neural crest-like "mesenchymal" cell state and a more differentiated sympathetic "adrenergic" cell state. These cell states are governed by autoregulatory transcriptional loops called core regulatory circuitries (CRCs), which drive the early development of sympathetic neuronal progenitors from migratory neural crest cells during embryogenesis. The adrenergic cell identity of neuroblastoma requires LMO1 as a transcriptional co-factor. Both LMO1 expression levels and the risk of developing neuroblastoma in children are associated with a single nucleotide polymorphism G/T that affects a G ATA motif in the first intron of LMO1. Here we show that wild-type zebrafish with the G ATA genotype develop adrenergic neuroblastoma, while knock-in of the protective T ATA allele at this locus reduces the penetrance of MYCN-driven tumors, which are restricted to the mesenchymal cell state. Whole genome sequencing of childhood neuroblastomas demonstrates that T ATA/ T ATA tumors also exhibit a mesenchymal cell state and are low risk at diagnosis. Thus, conversion of the regulatory G ATA to a T ATA allele in the first intron of LMO1 reduces the neuroblastoma initiation rate by preventing formation of the adrenergic cell state, a mechanism that is conserved over 400 million years of evolution separating zebrafish and humans.

5.
Nat Biotechnol ; 41(3): 337-343, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36163548

RESUMO

The CRISPR prime editor PE2 consists of a Streptococcus pyogenes Cas9 nickase (nSpCas9) fused at its C-terminus to a Moloney murine leukemia virus reverse transcriptase (MMLV-RT). Here we show that separated nSpCas9 and MMLV-RT proteins function as efficiently as intact PE2 in human cells. We use this Split-PE system to rapidly identify and engineer more compact prime editor architectures that also broaden the types of RTs used for prime editing.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Vírus da Leucemia Murina de Moloney , DNA Polimerase Dirigida por RNA , Streptococcus pyogenes , Animais , Humanos , Camundongos , Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Vírus da Leucemia Murina de Moloney/genética , DNA Polimerase Dirigida por RNA/genética , Streptococcus pyogenes/genética , Desoxirribonuclease I/genética
6.
Science ; 378(6625): 1227-1234, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36520914

RESUMO

Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Redes Reguladoras de Genes , Genes Sintéticos , Linfócitos T , Fatores de Transcrição , Dedos de Zinco , Humanos , Terapia Baseada em Transplante de Células e Tecidos/métodos , Biologia Sintética/métodos , Linfócitos T/metabolismo , Linfócitos T/transplante , Engenharia Genética
7.
Cell Genom ; 2(4)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35967079

RESUMO

Repeat elements can be dysregulated at a genome-wide scale in human diseases. For example, in Ewing sarcoma, hundreds of inert GGAA repeats can be converted into active enhancers when bound by EWS-FLI1. Here we show that fusions between EWS and GGAA-repeat-targeted engineered zinc finger arrays (ZFAs) can function at least as efficiently as EWS-FLI1 for converting hundreds of GGAA repeats into active enhancers in a Ewing sarcoma precursor cell model. Furthermore, a fusion of a KRAB domain to a ZFA can silence GGAA microsatellite enhancers genome wide in Ewing sarcoma cells, thereby reducing expression of EWS-FLI1-activated genes. Remarkably, this KRAB-ZFA fusion showed selective toxicity against Ewing sarcoma cells compared with non-Ewing cancer cells, consistent with its Ewing sarcoma-specific impact on the transcriptome. These findings demonstrate the value of ZFAs for functional annotation of repeats and illustrate how aberrant microsatellite activities might be regulated for potential therapeutic applications.

8.
Nat Protoc ; 16(12): 5592-5615, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34773119

RESUMO

Genome-wide unbiased identification of double-stranded breaks enabled by sequencing (GUIDE-seq) is a sensitive, unbiased, genome-wide method for defining the activity of genome-editing nucleases in living cells. GUIDE-seq is based on the principle of efficient integration of an end-protected double-stranded oligodeoxynucleotide tag into sites of nuclease-induced DNA double-stranded breaks, followed by amplification of tag-containing genomic DNA molecules and high-throughput sequencing. Here we describe a detailed GUIDE-seq protocol including cell transfection, library preparation, sequencing and bioinformatic analysis. The entire protocol including cell culture can be completed in 9 d. Once tag-integrated genomic DNA is isolated, library preparation, sequencing and analysis can be performed in 3 d. The result is a genome-wide catalog of off-target sites ranked by nuclease activity as measured by GUIDE-seq read counts. GUIDE-seq is one of the most sensitive cell-based methods for defining genome-wide off-target activity and has been broadly adopted for research and therapeutic use.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma Humano , Reação em Cadeia da Polimerase/métodos , RNA Guia de Cinetoplastídeos/genética , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Primers do DNA/síntese química , Primers do DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/química , Eletroporação/métodos , Humanos , Osteoblastos/citologia , Osteoblastos/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , RNA Guia de Cinetoplastídeos/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
9.
Nat Commun ; 12(1): 1034, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33589617

RESUMO

Prime editing (PE) is a versatile genome editing technology, but design of the required guide RNAs is more complex than for standard CRISPR-based nucleases or base editors. Here we describe PrimeDesign, a user-friendly, end-to-end web application and command-line tool for the design of PE experiments. PrimeDesign can be used for single and combination editing applications, as well as genome-wide and saturation mutagenesis screens. Using PrimeDesign, we construct PrimeVar, a comprehensive and searchable database that includes candidate prime editing guide RNA (pegRNA) and nicking sgRNA (ngRNA) combinations for installing or correcting >68,500 pathogenic human genetic variants from the ClinVar database. Finally, we use PrimeDesign to design pegRNAs/ngRNAs to install a variety of human pathogenic variants in human cells.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Genoma Humano , RNA Guia de Cinetoplastídeos/genética , Pareamento de Bases , Sequência de Bases , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bases de Dados Genéticas , Doença de Fabry/genética , Doença de Fabry/metabolismo , Doença de Fabry/patologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Hemofilia A/genética , Hemofilia A/metabolismo , Hemofilia A/patologia , Humanos , Modelos Biológicos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Mutação , Conformação de Ácido Nucleico , Plasmídeos/química , Plasmídeos/metabolismo , RNA Guia de Cinetoplastídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
10.
Nat Biotechnol ; 39(1): 94-104, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32661438

RESUMO

Cas12a RNA-guided endonucleases are promising tools for multiplexed genetic perturbations because they can process multiple guide RNAs expressed as a single transcript, and subsequently cleave target DNA. However, their widespread adoption has lagged behind Cas9-based strategies due to low activity and the lack of a well-validated pooled screening toolkit. In the present study, we describe the optimization of enhanced Cas12a from Acidaminococcus (enAsCas12a) for pooled, combinatorial genetic screens in human cells. By assaying the activity of thousands of guides, we refine on-target design rules and develop a comprehensive set of off-target rules to predict and exclude promiscuous guides. We also identify 38 direct repeat variants that can substitute for the wild-type sequence. We validate our optimized AsCas12a toolkit by screening for synthetic lethalities in OVCAR8 and A375 cancer cells, discovering an interaction between MARCH5 and WSB2. Finally, we show that enAsCas12a delivers similar performance to Cas9 in genome-wide dropout screens but at greatly reduced library size, which will facilitate screens in challenging models.


Assuntos
Proteínas de Bactérias , Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas/genética , Endodesoxirribonucleases , Edição de Genes/métodos , RNA Guia de Cinetoplastídeos , Acidaminococcus/genética , Apoptose/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , Linhagem Celular Tumoral , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Biblioteca Gênica , Células HEK293 , Humanos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
11.
J Immunother Cancer ; 8(2)2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32900862

RESUMO

BACKGROUND: Adoptive cell therapy with chimeric antigen receptor T cells (CAR-T) has become a standard treatment for patients with certain aggressive B cell malignancies and holds promise to improve the care of patients suffering from numerous other cancers in the future. However, the high manufacturing cost of CAR-T cell therapies poses a major barrier to their broader clinical application. Among the key cost drivers of CAR-T production are single-use reagents for T cell activation and clinical-grade viral vector. The presence of variable amounts of contaminating monocytes in the starting material poses an additional challenge to CAR-T manufacturing, since they can impede T cell stimulation and transduction, resulting in manufacturing failure. METHODS: We created K562-based artificial antigen-presenting cells (aAPC) with genetically encoded T cell stimulation and costimulation that represent an inexhaustible source for T cell activation. We additionally disrupted endogenous expression of the low-density lipoprotein receptor (LDLR) on these aAPC (aAPC-ΔLDLR) using CRISPR-Cas9 gene editing nucleases to prevent inadvertent lentiviral transduction and avoid the sink effect on viral vector during transduction. Using various T cell sources, we produced CD19-directed CAR-T cells via aAPC-ΔLDLR-based activation and tested their in vitro and in vivo antitumor potency against B cell malignancies. RESULTS: We found that lack of LDLR expression on our aAPC-ΔLDLR conferred resistance to lentiviral transduction during CAR-T production. Using aAPC-ΔLDLR, we achieved efficient expansion of CAR-T cells even from unpurified starting material like peripheral blood mononuclear cells or unmanipulated leukapheresis product, containing substantial proportions of monocytes. CD19-directed CAR-T cells that we produced via aAPC-ΔLDLR-based expansion demonstrated potent antitumor responses in preclinical models of acute lymphoblastic leukemia and B-cell lymphoma. CONCLUSIONS: Our aAPC-ΔLDLR represent an attractive approach for manufacturing of lentivirally transduced T cells that may be simpler and more cost efficient than currently available methods.


Assuntos
Células Apresentadoras de Antígenos/metabolismo , Imunoterapia Adotiva/métodos , Lentivirus/genética , Transdução Genética/métodos , Humanos
12.
Nat Med ; 26(4): 535-541, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284612

RESUMO

Base editing by nucleotide deaminases linked to programmable DNA-binding proteins represents a promising approach to permanently remedy blood disorders, although its application in engrafting hematopoietic stem cells (HSCs) remains unexplored. In this study, we purified A3A (N57Q)-BE3 base editor for ribonucleoprotein (RNP) electroporation of human-peripheral-blood-mobilized CD34+ hematopoietic stem and progenitor cells (HSPCs). We observed frequent on-target cytosine base edits at the BCL11A erythroid enhancer at +58 with few indels. Fetal hemoglobin (HbF) induction in erythroid progeny after base editing or nuclease editing was similar. A single therapeutic base edit of the BCL11A enhancer prevented sickling and ameliorated globin chain imbalance in erythroid progeny from sickle cell disease and ß-thalassemia patient-derived HSPCs, respectively. Moreover, efficient multiplex editing could be achieved with combined disruption of the BCL11A erythroid enhancer and correction of the HBB -28A>G promoter mutation. Finally, base edits could be produced in multilineage-repopulating self-renewing human HSCs with high frequency as assayed in primary and secondary recipient animals resulting in potent HbF induction in vivo. Together, these results demonstrate the potential of RNP base editing of human HSPCs as a feasible alternative to nuclease editing for HSC-targeted therapeutic genome modification.


Assuntos
Anemia Falciforme/patologia , Edição de Genes , Terapia Genética/métodos , Células-Tronco Hematopoéticas/metabolismo , Proteínas Repressoras/genética , gama-Globinas/genética , Anemia Falciforme/terapia , Animais , Antígenos CD34/metabolismo , Sistemas CRISPR-Cas , Células Cultivadas , Estudos de Viabilidade , Feminino , Edição de Genes/métodos , Marcação de Genes/métodos , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos , Cultura Primária de Células , Proteínas Repressoras/metabolismo , Talassemia beta/patologia , Talassemia beta/terapia , gama-Globinas/metabolismo
13.
Nat Commun ; 10(1): 4439, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570731

RESUMO

Adeno-associated virus (AAV) vectors have shown promising results in preclinical models, but the genomic consequences of transduction with AAV vectors encoding CRISPR-Cas nucleases is still being examined. In this study, we observe high levels of AAV integration (up to 47%) into Cas9-induced double-strand breaks (DSBs) in therapeutically relevant genes in cultured murine neurons, mouse brain, muscle and cochlea. Genome-wide AAV mapping in mouse brain shows no overall increase of AAV integration except at the CRISPR/Cas9 target site. To allow detailed characterization of integration events we engineer a miniature AAV encoding a 465 bp lambda bacteriophage DNA (AAV-λ465), enabling sequencing of the entire integrated vector genome. The integration profile of AAV-465λ in cultured cells display both full-length and fragmented AAV genomes at Cas9 on-target sites. Our data indicate that AAV integration should be recognized as a common outcome for applications that utilize AAV for genome editing.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos , Integração Viral/genética , Animais , Bacteriófago lambda/genética , Encéfalo , Linhagem Celular , Mapeamento Cromossômico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cóclea , Endonucleases , Marcação de Genes/métodos , Terapia Genética/métodos , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculos , Neurônios/virologia , Reparo Gênico Alvo-Dirigido/métodos , Resultado do Tratamento
14.
Nat Med ; 25(7): 1123-1130, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31270503

RESUMO

Since most dominant human mutations are single nucleotide substitutions1,2, we explored gene editing strategies to disrupt dominant mutations efficiently and selectively without affecting wild-type alleles. However, single nucleotide discrimination can be difficult to achieve3 because commonly used endonucleases, such as Streptococcus pyogenes Cas9 (SpCas9), can tolerate up to seven mismatches between guide RNA (gRNA) and target DNA. Furthermore, the protospacer-adjacent motif (PAM) in some Cas9 enzymes can tolerate mismatches with the target DNA3,4. To circumvent these limitations, we screened 14 Cas9/gRNA combinations for specific and efficient disruption of a nucleotide substitution that causes the dominant progressive hearing loss, DFNA36. As a model for DFNA36, we used Beethoven mice5, which harbor a point mutation in Tmc1, a gene required for hearing that encodes a pore-forming subunit of mechanosensory transduction channels in inner-ear hair cells6. We identified a PAM variant of Staphylococcus aureus Cas9 (SaCas9-KKH) that selectively and efficiently disrupted the mutant allele, but not the wild-type Tmc1/TMC1 allele, in Beethoven mice and in a DFNA36 human cell line. Adeno-associated virus (AAV)-mediated SaCas9-KKH delivery prevented deafness in Beethoven mice up to one year post injection. Analysis of current ClinVar entries revealed that ~21% of dominant human mutations could be targeted using a similar approach.


Assuntos
Alelos , Edição de Genes , Perda Auditiva Neurossensorial/prevenção & controle , Proteínas de Membrana/genética , Animais , Proteína 9 Associada à CRISPR/fisiologia , Linhagem Celular , Células Cultivadas , Dependovirus/genética , Modelos Animais de Doenças , Perda Auditiva Neurossensorial/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
15.
Nature ; 569(7756): 433-437, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30995674

RESUMO

CRISPR-Cas base-editor technology enables targeted nucleotide alterations, and is being increasingly used for research and potential therapeutic applications1,2. The most widely used cytosine base editors (CBEs) induce deamination of DNA cytosines using the rat APOBEC1 enzyme, which is targeted by a linked Cas protein-guide RNA complex3,4. Previous studies of the specificity of CBEs have identified off-target DNA edits in mammalian cells5,6. Here we show that a CBE with rat APOBEC1 can cause extensive transcriptome-wide deamination of RNA cytosines in human cells, inducing tens of thousands of C-to-U edits with frequencies ranging from 0.07% to 100% in 38-58% of expressed genes. CBE-induced RNA edits occur in both protein-coding and non-protein-coding sequences and generate missense, nonsense, splice site, and 5' and 3' untranslated region mutations. We engineered two CBE variants bearing mutations in rat APOBEC1 that substantially decreased the number of RNA edits (by more than 390-fold and more than 3,800-fold) in human cells. These variants also showed more precise on-target DNA editing than the wild-type CBE and, for most guide RNAs tested, no substantial reduction in editing efficiency. Finally, we show that an adenine base editor7 can also induce transcriptome-wide RNA edits. These results have implications for the use of base editors in both research and clinical settings, illustrate the feasibility of engineering improved variants with reduced RNA editing activities, and suggest the need to more fully define and characterize the RNA off-target effects of deaminase enzymes in base editor platforms.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Edição de RNA , Especificidade por Substrato/genética , Transcriptoma/genética , Desaminase APOBEC-1/química , Desaminase APOBEC-1/genética , Desaminase APOBEC-1/metabolismo , Animais , Sequência de Bases , Citosina/metabolismo , Desaminação , Células HEK293 , Células Hep G2 , Humanos , Mutação , RNA/química , RNA/metabolismo , Ratos
16.
Nat Protoc ; 13(11): 2615-2642, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30341435

RESUMO

Circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq) is a sensitive and unbiased method for defining the genome-wide activity (on-target and off-target) of CRISPR-Cas9 nucleases by selective sequencing of nuclease-cleaved genomic DNA (gDNA). Here, we describe a detailed experimental and analytical protocol for CIRCLE-seq. The principle of our method is to generate a library of circularized gDNA with minimized numbers of free ends. Highly purified gDNA circles are treated with CRISPR-Cas9 ribonucleoprotein complexes, and nuclease-linearized DNA fragments are then ligated to adapters for high-throughput sequencing. The primary advantages of CIRCLE-seq as compared with other in vitro methods for defining genome-wide genome editing activity are (i) high enrichment for sequencing nuclease-cleaved gDNA/low background, enabling sensitive detection with low sequencing depth requirements; and (ii) the fact that paired-end reads can contain complete information on individual nuclease cleavage sites, enabling use of CIRCLE-seq in species without high-quality reference genomes. The entire protocol can be completed in 2 weeks, including time for gRNA cloning, sequence verification, in vitro transcription, library preparation, and sequencing.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA Circular/genética , Edição de Genes/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Proteína 9 Associada à CRISPR/metabolismo , Linhagem Celular Tumoral , DNA Circular/metabolismo , Biblioteca Gênica , Genoma Humano , Humanos , Linfócitos/citologia , Linfócitos/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
17.
Mol Ther Nucleic Acids ; 11: 429-440, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858078

RESUMO

The APPswe (Swedish) mutation in the amyloid precursor protein (APP) gene causes dominantly inherited Alzheimer's disease (AD) as a result of increased ß-secretase cleavage of the amyloid-ß (Aß) precursor protein. This leads to abnormally high Aß levels, not only in brain but also in peripheral tissues of mutation carriers. Here, we selectively disrupted the human mutant APPSW allele using CRISPR. By applying CRISPR/Cas9 from Streptococcus pyogenes, we generated allele-specific deletions of either APPSW or APPWT. As measured by ELISA, conditioned media of targeted patient-derived fibroblasts displayed an approximate 60% reduction in secreted Aß. Next, coding sequences for the APPSW-specific guide RNA (gRNA) and Cas9 were packaged into separate adeno-associated viral (AAV) vectors. Site-specific indel formation was achieved both in primary neurons isolated from APPSW transgenic mouse embryos (Tg2576) and after co-injection of these vectors into hippocampus of adult mice. Taken together, we here present proof-of-concept data that CRISPR/Cas9 can selectively disrupt the APPSW allele both ex vivo and in vivo-and thereby decrease pathogenic Aß. Hence, this system may have the potential to be developed as a tool for gene therapy against AD caused by APPswe and other point mutations associated with increased Aß.

18.
Arterioscler Thromb Vasc Biol ; 38(7): 1562-1575, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29724820

RESUMO

OBJECTIVE: Tie1 (tyrosine kinase containing immunoglobulin and epidermal growth factor homology 1), an endothelial and hematopoietic cell-specific receptor tyrosine kinase, is an important regulator of angiogenesis and critical for maintaining vascular integrity. The post-transcriptional regulation of tie1 mRNA expression is not understood, but it might partly explain Tie1's differential expression pattern in endothelium. Following up on our previous work that identified natural antisense transcripts from the tie1 locus-tie1 antisense (tie1AS), which regulates tie1 mRNA levels in zebrafish-we attempted to identify the mechanism of this regulation. APPROACH AND RESULTS: Through in vitro and in vivo ribonucleoprotein binding studies, we demonstrated that tie1AS long noncoding RNA interacts with an RNA binding protein-embryonic lethal and abnormal vision Drosophila-like 1 (Elavl1)-that regulates tie1 mRNA levels. When we disrupted the interaction between tie1AS and Elavl1 by using constitutively active antisense morpholino oligonucleotides or photoactivatable morpholino oligonucleotides, tie1 mRNA levels increased between 26 and 31 hours post-fertilization, particularly in the head. This increase correlated with dilation of primordial midbrain channels, smaller eyes, and reduced ventricular space. We also observed these phenotypes when we used CRISPR (clustered regularly interspaced short palindromic repeats)-mediated CRISPRi (CRISPR-mediated interference) to knock down tie1AS. Treatment of the morpholino oligonucleotide-injected embryos with a small molecule that decreased tie1 mRNA levels rescued all 3 abnormal phenotypes. CONCLUSIONS: We identified a novel mode of temporal and spatial post-transcriptional regulation of tie1 mRNA. It involves long noncoding RNA, tie1AS, and Elavl1 (an interactor of tie1AS).


Assuntos
Vasos Sanguíneos/enzimologia , Encéfalo/irrigação sanguínea , Neovascularização Fisiológica/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Vasos Sanguíneos/embriologia , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Receptor de TIE-1/genética , Receptor de TIE-1/metabolismo , Fatores de Tempo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
19.
Science ; 359(6372)2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29326244

RESUMO

After almost 30 years of promise tempered by setbacks, gene therapies are rapidly becoming a critical component of the therapeutic armamentarium for a variety of inherited and acquired human diseases. Gene therapies for inherited immune disorders, hemophilia, eye and neurodegenerative disorders, and lymphoid cancers recently progressed to approved drug status in the United States and Europe, or are anticipated to receive approval in the near future. In this Review, we discuss milestones in the development of gene therapies, focusing on direct in vivo administration of viral vectors and adoptive transfer of genetically engineered T cells or hematopoietic stem cells. We also discuss emerging genome editing technologies that should further advance the scope and efficacy of gene therapy approaches.


Assuntos
Terapia Genética , Animais , Edição de Genes , Técnicas de Transferência de Genes , Doenças Genéticas Inatas/terapia , Engenharia Genética , Terapia Genética/efeitos adversos , Vetores Genéticos , Doenças Hematológicas/terapia , Humanos , Neoplasias/terapia , Doenças Neuromusculares/terapia , Pesquisa Translacional Biomédica
20.
Nat Methods ; 14(12): 1163-1166, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29083402

RESUMO

Targeted and inducible regulation of mammalian gene expression is a broadly important capability. We engineered drug-inducible catalytically inactive Cpf1 nuclease fused to transcriptional activation domains to tune the expression of endogenous genes in human cells. Leveraging the multiplex capability of the Cpf1 platform, we demonstrate both synergistic and combinatorial gene expression in human cells. Our work should enable the development of multiplex gene perturbation library screens for understanding complex cellular phenotypes.


Assuntos
Proteínas de Bactérias/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Endonucleases/genética , Ativação Transcricional , Técnicas de Cultura de Células , Proteínas de Fluorescência Verde/genética , Células HEK293 , Proteína Vmw65 do Vírus do Herpes Simples/genética , Humanos , Proteínas Imediatamente Precoces/genética , Plasmídeos , Proteínas Recombinantes de Fusão/genética , Transativadores/genética , Fator de Transcrição RelA/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA