Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 908-922, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330663

RESUMO

Combinational therapy in cancer treatment that integrates the merits of different therapies is an effective approach to improve therapeutic outcomes. Herein, a simple nanoplatform (N-CNS-CaO2-HA/Ce6 NCs) that synergized chemodynamic therapy (CDT), photodynamic therapy (PDT), photothermal therapy (PTT), and Ca2+ interference therapy (CIT) has been developed to combat hypoxic tumors. With high photothermal effect, excellent peroxidase-like activity, and inherent mesoporous structure, N-doped carbon nanospheres (N-CNSs) were prepared via in situ pyrolysis of an established nanoscale covalent organic frameworks (COFs) precursor. These N-CNSs acted as PTT/CDT agents and carriers for the photosensitizer chlorin e6 (Ce6), thereby yielding a minimally invasive PDT/PTT/CDT synergistic therapy. Hyaluronic acid (HA)-modified CaO2 nanoparticles (CaO2-HA NPs) coated on the surface of the nanoplatform endowed the nanoplatform with O2/H2O2 self-supply capability to respond to and modulate the tumor microenvironment (TME), which greatly facilitated the tumor-specific performance of CDT and PDT. Moreover, the reactive oxygen species (ROS) produced during PDT and CDT enhanced the Ca2+ overloading due to CaO2 decomposition, amplifying the intracellular oxidative stress and leading to mitochondrial dysfunction. Notably, the HA molecules not only increased the cancer-targeting efficiency but also prevented CaO2 degradation during blood circulation, providing double insurance of tumor-selective CIT. Such a nanotherapeutic system possessed boosted antitumor efficacy with minimized systemic toxicity and showed great potential for treating hypoxic tumors.


Assuntos
Estruturas Metalorgânicas , Nanopartículas , Nanosferas , Neoplasias , Fotoquimioterapia , Porfirinas , Humanos , Nanosferas/química , Cálcio , Carbono , Peróxido de Hidrogênio/química , Nanopartículas/química , Porfirinas/química , Neoplasias/tratamento farmacológico , Estresse Oxidativo , Linhagem Celular Tumoral , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA