Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 39(6): 1254-1262, 2022 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-36575096

RESUMO

Natural collagen peptides are collagen hydrolysates. Because of their unique physicochemical properties and excellent biological activities, collagen peptides have been a research hotspot of cosmetic raw materials development and skincare efficacy improvement. Combined with the needs of the skincare efficacy and the development trends of cosmetics, the extraction methods and their structural characteristics of natural collagen peptides were summarized in detail. The applications and its research progress in skincare efficacy of collagen peptides, such as moisturizing and anti-wrinkle, trophism and anti-aging, filling and skin regeneration were expressed with emphasis. Finally, the development and practical applications in cosmetics of natural collagen peptides were adequately prospected.


Assuntos
Cosméticos , Higiene da Pele , Pele , Peptídeos/farmacologia , Cosméticos/química , Colágeno
2.
Appl Microbiol Biotechnol ; 106(5-6): 1933-1944, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35235006

RESUMO

Forskolin, one of the primary active metabolites of labdane-type diterpenoids, exhibits significant medicinal value, such as anticancer, antiasthmatic, and antihypertensive activities. In this study, we constructed a Saccharomyces cerevisiae cell factory that efficiently produced forskolin. First, a chassis strain that can accumulate 145.8 mg/L 13R-manoyl oxide (13R-MO), the critical precursor of forskolin, was constructed. Then, forskolin was produced by integrating CfCYP76AH15, CfCYP76AH11, CfCYP76AH16, ATR1, and CfACT1-8 into the 13R-MO chassis with a titer of 76.25 µg/L. We confirmed that cytochrome P450 enzymes (P450s) are the rate-limiting step by detecting intermediate metabolite accumulation. Forskolin production reached 759.42 µg/L by optimizing the adaptations between CfCYP76AHs, t66CfCPR, and t30AaCYB5. Moreover, multiple metabolic engineering strategies, including regulation of the target genes' copy numbers, amplification of the endoplasmic reticulum (ER) area, and cofactor metabolism enhancement, were implemented to enhance the metabolic flow to forskolin from 13R-MO, resulting in a final forskolin yield of 21.47 mg/L in shake flasks and 79.33 mg/L in a 5 L bioreactor. These promising results provide guidance for the synthesis of other natural terpenoids in S. cerevisiae, especially for those containing multiple P450s in their synthetic pathways. KEY POINTS: • The forskolin biosynthesis pathway was optimized from the perspective of system metabolism for the first time in S. cerevisiae. • The adaptation and optimization of CYP76AHs, t66CfCPR, and t30AaCYB5 promote forskolin accumulation, which can provide a reference for diterpenoids containing complex pathways, especially multiple P450s pathways. • The forskolin titer of 79.33 mg/L is the highest production currently reported and was achieved by fed-batch fermentation in a 5 L bioreactor.


Assuntos
Engenharia Metabólica , Saccharomyces cerevisiae , Vias Biossintéticas , Colforsina , Fermentação , Engenharia Metabólica/métodos , Saccharomyces cerevisiae/metabolismo
3.
Onco Targets Ther ; 14: 3239-3249, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34040389

RESUMO

PURPOSE: The purpose of this study was to investigate the relationship between microRNA-29b-3p (miR-29b-3p) and myc-associated zinc finger protein (MAZ) expression and the effects of this interaction on the proliferation, migration, and invasion of gastric cancer cells. METHODS: qPCR and Western blots were used to detect the expression of miR-29b-3p and MAZ. The dual luciferase reporter gene system was used to explore whether MAZ is the target of miR-29b-3p. Cell function experiments and a mouse tumorigenesis model were used to determine the effects of miR-29b-3p overexpression and MAZ depletion on proliferation, migration, and invasion in gastric cancer cell lines and on tumor growth. RESULTS: The expression level of miR-29b-3p was low and the expression level of MAZ was high in gastric cancer cells compared with normal human gastric mucosal epithelial cells. MAZ was the target gene of miR-29b-3p. The upregulation of miR-29b-3p reduces the expression of MAZ. Overexpression of miR-29b-3p and downregulation of MAZ inhibited the proliferation and migration of cancer cells and induced apoptosis by controlling the expression of autophagy-related proteins. MiR-29b-3p mimics inhibit tumor growth in mice. CONCLUSION: MiR-29b-3p inhibits the migration and invasion of gastric cancer cells by regulating the autophagy-related protein MAZ.

4.
J Ind Microbiol Biotechnol ; 48(1-2)2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33928347

RESUMO

Forskolin, a class of labdane-type diterpenoid, has significant medicinal value in anticancer, antiasthmatic, antihypertensive, and heart-strengthening treatments. The main source of natural forskolin is its extraction from the cork tissue of the root of Coleus forskohlii. However, conventional modes of extraction pose several challenges. In recent years, the construction of microbial cell factories to produce medicinal natural products via synthetic biological methods has effectively solved the current problems and is a research hotspot in this field. This review summarizes the recent progress in the heterologous synthesis of forskolin via synthetic biological technology, analyzes the current challenges, and proposes corresponding strategies.


Assuntos
Colforsina/metabolismo , Colforsina/química , Diterpenos/química , Diterpenos/metabolismo
5.
Molecules ; 25(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466391

RESUMO

: The new rigid planar ligand 2,5-bis(3-(pyridine-4-yl)phenyl)thiazolo[5,4-d]thiazole (BPPT) has been synthesized, which is an excellent building block for assembling coordination polymer. Under solvothermal reaction conditions, cadmium ion with BPPT in the presence of various carboxylic acids including (1,1'-biphenyl)-4,4'-dicarboxylic acid (BPDC), isophthalic acid (IP), and benzene-1,3,5-tricarboxylic acid (BTC) gave rise to three coordination complexes, viz, [Cd(BPPT)(BPDA)](BPPT)n (1), [Cd(BPPT) (IP)] (CH3OH) (2), and [Cd3(BPPT)3(BTC)2(H2O)2] (3). The structures of 1, 2, and 3 were characterized by single crystal X-ray diffraction. The IR spectra as well as thermogravimetric and luminescence properties were also investigated. Complex 1 is a two-dimensional (2D) network and further stretched to a 3D supramolecular structure through π-π stacking interaction. The complexes 2 and 3 show 3D framework. The complexes 1, 2, and 3 exhibited luminescence property at room temperature.


Assuntos
Cádmio/química , Polímeros/química , Complexos de Coordenação/química , Ácidos Dicarboxílicos/química , Ligação de Hidrogênio , Luminescência , Difração de Raios X
6.
Microb Cell Fact ; 19(1): 41, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32075645

RESUMO

BACKGROUND: Ginsenoside compound K (CK), one of the primary active metabolites of protopanaxadiol-type ginsenosides, is produced by the intestinal flora that degrade ginseng saponins and exhibits diverse biological properties such as anticancer, anti-inflammatory, and anti-allergic properties. However, it is less abundant in plants. Therefore, enabling its commercialization by construction of a Saccharomyces cerevisiae cell factory is of considerable significance. RESULTS: We induced overexpression of PGM2, UGP1, and UGT1 genes in WLT-MVA5, and obtained a strain that produces ginsenoside CK. The production of CK at 96 h was 263.94 ± 2.36 mg/L, and the conversion rate from protopanaxadiol (PPD) to ginsenoside CK was 64.23 ± 0.41%. Additionally, it was observed that the addition of glycerol was beneficial to the synthesis of CK. When 20% glucose (C mol) in the YPD medium was replaced by the same C mol glycerol, CK production increased to 384.52 ± 15.23 mg/L, which was 45.68% higher than that in YPD medium, and the PPD conversion rate increased to 77.37 ± 3.37% as well. As we previously observed that ethanol is beneficial to the production of PPD, ethanol and glycerol were fed simultaneously in the 5-L bioreactor fed fermentation, and the CK levels reached 1.70 ± 0.16 g/L. CONCLUSIONS: In this study, we constructed an S. cerevisiae cell factory that efficiently produced ginsenoside CK. Glycerol effectively increased the glycosylation efficiency of PPD to ginsenoside CK, guiding higher carbon flow to the synthesis of ginsenosides and effectively improving CK production. CK production attained in a 5-L bioreactor was 1.7 g/L after simultaneous feeding of glycerol and ethanol.


Assuntos
Ginsenosídeos/biossíntese , Glicerol/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Sapogeninas/metabolismo , Etanol/metabolismo , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA