Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103145, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583415

RESUMO

Ferroptosis is a nonapoptotic form of regulated cell death that has been reported to play a central role in cardiac ischemia‒reperfusion (I/R) injury. N-acetyltransferase 10 (NAT10) contributes to cardiomyocyte apoptosis by functioning as an RNA ac4c acetyltransferase, but its role in cardiomyocyte ferroptosis during I/R injury has not been determined. This study aimed to elucidate the role of NAT10 in cardiac ferroptosis as well as the underlying mechanism. The mRNA and protein levels of NAT10 were increased in mouse hearts after I/R and in cardiomyocytes that were exposed to hypoxia/reoxygenation. P53 acted as an endogenous activator of NAT10 during I/R in a transcription-dependent manner. Cardiac overexpression of NAT10 caused cardiomyocyte ferroptosis to exacerbate I/R injury, while cardiomyocyte-specific knockout of NAT10 or pharmacological inhibition of NAT10 with Remodelin had the opposite effects. The inhibition of cardiomyocyte ferroptosis by Fer-1 exerted superior cardioprotective effects against the NAT10-induced exacerbation of post-I/R cardiac damage than the inhibition of apoptosis by emricasan. Mechanistically, NAT10 induced the ac4C modification of Mybbp1a, increasing its stability, which in turn activated p53 and subsequently repressed the transcription of the anti-ferroptotic gene SLC7A11. Moreover, knockdown of Mybbp1a partially abolished the detrimental effects of NAT10 overexpression on cardiomyocyte ferroptosis and cardiac I/R injury. Collectively, our study revealed that p53 and NAT10 interdependently cooperate to form a positive feedback loop that promotes cardiomyocyte ferroptosis to exacerbate cardiac I/R injury, suggesting that targeting the NAT10/Mybbp1a/p53 axis may be a novel approach for treating cardiac I/R.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Miócitos Cardíacos , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , Acetiltransferases/metabolismo , Acetiltransferases/genética , Apoptose , Modelos Animais de Doenças , Retroalimentação Fisiológica , Ferroptose/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética
2.
RSC Adv ; 10(18): 10612-10623, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35492911

RESUMO

To remove hexavalent chromium Cr(vi) efficiently, a novel Fe-Mn binary oxide adsorbent was prepared via a "two-step method" combined with a co-precipitation method and hydrothermal method. The as-prepared Fe-Mn binary oxide absorbent was characterized via transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectra (FTIR), thermogravimetric analysis (TGA), zeta potential, BET and X-ray photoelectron spectroscopy (XPS). The results indicated that the morphology of the adsorbent was rod-like with length of about 100 nm and width of about 50-60 nm, specific surface area was 63.297 m2 g-1, has the composition of α-Fe2O3, ß-MnO2 and MnFe2O4 and isoelectric point was observed at pH value of 4.81. The removal of Cr(vi) was chosen as a model reaction to evaluate the adsorption capacity of the Fe-Mn binary oxide adsorbent, indicating that the Fe-Mn binary oxide adsorbent showed high adsorption performance (removal rate = 99%) and excellent adsorption stability (removal rate > 90% after six rounds of adsorption). The adsorption behavior of the Fe-Mn binary oxide was better represented by the Freundlich model (adsorption isotherm) and the pseudo-second-order model (adsorption kinetic), suggesting that the adsorption process was multi-molecular layer chemical adsorption. The possible adsorption mechanism of the Fe-Mn binary oxide for the removal of Cr(vi) included the protonation process and the electrostatic attraction interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA