Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1312380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726002

RESUMO

Objective: The choice of neoadjuvant therapy for esophageal squamous cell carcinoma (ESCC) is controversial. This study aims to provide a basis for clinical treatment selection by establishing a predictive model for the efficacy of neoadjuvant immunochemotherapy (NICT). Methods: A retrospective analysis of 30 patients was conducted, divided into Response and Non-response groups based on whether they achieved major pathological remission (MPR). Differences in genes and immune microenvironment between the two groups were analyzed through next-generation sequencing (NGS) and multiplex immunofluorescence (mIF). Variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves to establish a predictive model. An additional 48 patients were prospectively collected as a validation set to verify the model's effectiveness. Results: NGS suggested seven differential genes (ATM, ATR, BIVM-ERCC5, MAP3K1, PRG, RBM10, and TSHR) between the two groups (P < 0.05). mIF indicated significant differences in the quantity and location of CD3+, PD-L1+, CD3+PD-L1+, CD4+PD-1+, CD4+LAG-3+, CD8+LAG-3+, LAG-3+ between the two groups before treatment (P < 0.05). Dynamic mIF analysis also indicated that CD3+, CD8+, and CD20+ all increased after treatment in both groups, with a more significant increase in CD8+ and CD20+ in the Response group (P < 0.05), and a more significant decrease in PD-L1+ (P < 0.05). The three variables most closely related to therapeutic efficacy were selected through LASSO regression and ROC curves: Tumor area PD-L1+ (AUC= 0.881), CD3+PD-L1+ (AUC= 0.833), and CD3+ (AUC= 0.826), and a predictive model was established. The model showed high performance in both the training set (AUC= 0.938) and the validation set (AUC= 0.832). Compared to the traditional CPS scoring criteria, the model showed significant improvements in accuracy (83.3% vs 70.8%), sensitivity (0.625 vs 0.312), and specificity (0.937 vs 0.906). Conclusion: NICT treatment may exert anti-tumor effects by enriching immune cells and activating exhausted T cells. Tumor area CD3+, PD-L1+, and CD3+PD-L1+ are closely related to therapeutic efficacy. The model containing these three variables can accurately predict treatment outcomes, providing a reliable basis for the selection of neoadjuvant treatment plans.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Terapia Neoadjuvante , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Carcinoma de Células Escamosas do Esôfago/terapia , Carcinoma de Células Escamosas do Esôfago/imunologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Terapia Neoadjuvante/métodos , Neoplasias Esofágicas/terapia , Neoplasias Esofágicas/imunologia , Neoplasias Esofágicas/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Prognóstico , Idoso , Biomarcadores Tumorais , Resultado do Tratamento , Imunoterapia/métodos
2.
Nat Commun ; 11(1): 1729, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32265438

RESUMO

The TrkB receptor is critical for the control of energy balance, as mutations in its gene (NTRK2) lead to hyperphagia and severe obesity. The main neural substrate mediating the appetite-suppressing activity of TrkB, however, remains unknown. Here, we demonstrate that selective Ntrk2 deletion within paraventricular hypothalamus (PVH) leads to severe hyperphagic obesity. Furthermore, chemogenetic activation or inhibition of TrkB-expressing PVH (PVHTrkB) neurons suppresses or increases food intake, respectively. PVHTrkB neurons project to multiple brain regions, including ventromedial hypothalamus (VMH) and lateral parabrachial nucleus (LPBN). We find that PVHTrkB neurons projecting to LPBN are distinct from those to VMH, yet Ntrk2 deletion in PVH neurons projecting to either VMH or LPBN results in hyperphagia and obesity. Additionally, TrkB activation with BDNF increases firing of these PVH neurons. Therefore, TrkB signaling is a key regulator of a previously uncharacterized neuronal population within the PVH that impinges upon multiple circuits to govern appetite.


Assuntos
Hiperfagia/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Tirosina Quinases/metabolismo , Animais , Apetite/genética , Comportamento Alimentar/fisiologia , Feminino , Hiperfagia/genética , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Obesidade/genética , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiopatologia , Proteínas Tirosina Quinases/genética , Núcleo Hipotalâmico Ventromedial/citologia , Núcleo Hipotalâmico Ventromedial/metabolismo
3.
Mol Endocrinol ; 30(5): 494-503, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27003443

RESUMO

Brain-derived neurotrophic factor (BDNF) expressed in the paraventricular hypothalamus (PVH) has been shown to play a key role in regulating energy intake and energy expenditure. BDNF is also expressed in other hypothalamic nuclei; however, the role in the control of energy balance for BDNF produced in these structures remains largely unknown. We found that deleting the Bdnf gene in the ventromedial hypothalamus (VMH) during embryogenesis using the Sf1-Cre transgene had no effect on body weight in mice. In contrast, deleting the Bdnf gene in the adult VMH using Cre-expressing virus led to significant hyperphagia and obesity. These observations indicate that the lack of a hyperphagia phenotype in the Sf1-Cre/Bdnf mutant mice is likely due to developmental compensation. To investigate the role of BDNF expressed in other hypothalamic areas, we employed the hypothalamus-specific Nkx2.1-Cre transgene to delete the Bdnf gene. We found that the Nkx2.1-Cre transgene could abolish BDNF expression in many hypothalamic nuclei, but not in the PVH, and that the resulting mutant mice developed modest obesity due to reduced energy expenditure. Thus, BDNF produced in the VMH plays a role in regulating energy intake. Furthermore, BDNF expressed in hypothalamic areas other than PVH and VMH is also involved in the control of energy expenditure.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo Energético/fisiologia , Hipotálamo/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo , Animais , Peso Corporal/fisiologia , Ingestão de Energia/fisiologia , Hiperfagia/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fatores de Processamento de RNA/metabolismo , Fator Nuclear 1 de Tireoide/metabolismo , Transgenes/fisiologia
4.
Technol Cancer Res Treat ; 15(6): 729-731, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26376693

RESUMO

Deletion of oncosuppressors occurs frequently in the cancer genome. A great deal of effort has been made to therapeutically restore the lost function of oncosuppressors, with little clinically translatable success, however. Reassuringly, besides the disappointing restoration endeavors, oncosuppressor loss can be therapeutically exploited in several other ways, such as the "synthetic lethality" strategies and the "therapeutic vulnerability" created by codeletion of neighboring genes. The study by Liu et al showed that codeletion of p53 and a neighboring essential gene POLR2A rendered colon cancer cells highly sensitive to further inhibition of POLR2A both in vitro and in vivo In recent years, several studies have reported similar phenomenon in a wide range of cancer types. In this focus article, we will introduce several kinds of anticancer opportunities created by the loss of oncosuppressors and discuss their mechanisms. Given the frequency of oncosuppressor loss in cancer, its therapeutic exploitation rather merits further investigation and may open a new window for oncotherapy.


Assuntos
Genes Supressores de Tumor/fisiologia , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Deleção de Genes , Genoma/genética , Humanos
5.
Sci Rep ; 5: 13693, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329134

RESUMO

G-quadruplexes formed in telomeric DNA sequences at human chromosome ends can be a novel target for the development of therapeutics for the treatment of cancer patients. Herein, we examined the ability of six novel benzothioxanthene derivatives S1-S6 to induce the formation of and stabilize an antiparallel G-quadruplex by EMSA, UV-melting and CD techniques and the influence of S1-S6 on A549 and SGC7901 cells through real-time cell analysis, wound healing, trap assay methods. Results show that six compounds could differentially induce 26 nt G-rich oligonucleotides to form the G-quadruplex with high selectivity vs C-rich DNA, mutated DNA and double-stranded DNA, stabilize it with high affinity, promote apoptosis and inhibit mobility and telomerase activity of A549 cells and SGC7901 cells. Especially, S1, S3, S4 displayed stronger abilities, of which S3 was the most optimal with the maximum ΔTm value being up to 29.8 °C for G-quadruplex, the minimum IC50 value being 0.53 µM and the maximum cell inhibitory rate being up to 97.2%. This study suggests that this type of compounds that induce the formation of and stabilize the telomeric antiparallel G-quadruplex, and consequently inhibit telomerase activity, leading to cell apoptosis, can be screened for the discovery of novel antitumor therapeutics.


Assuntos
Antineoplásicos/farmacologia , Quadruplex G , Telomerase/metabolismo , Telômero/metabolismo , Tioxantenos/farmacologia , Apoptose/efeitos dos fármacos , Sequência de Bases , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Dicroísmo Circular , Humanos , Concentração Inibidora 50 , Tioxantenos/química , Temperatura de Transição
6.
Cell Metab ; 22(1): 175-88, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26073495

RESUMO

Brain-derived neurotrophic factor (BDNF) is a key regulator of energy balance; however, its underlying mechanism remains unknown. By analyzing BDNF-expressing neurons in paraventricular hypothalamus (PVH), we have uncovered neural circuits that control energy balance. The Bdnf gene in the PVH was mostly expressed in previously undefined neurons, and its deletion caused hyperphagia, reduced locomotor activity, impaired thermogenesis, and severe obesity. Hyperphagia and reduced locomotor activity were associated with Bdnf deletion in anterior PVH, whereas BDNF neurons in medial and posterior PVH drive thermogenesis by projecting to spinal cord and forming polysynaptic connections to brown adipose tissues. Furthermore, BDNF expression in the PVH was increased in response to cold exposure, and its ablation caused atrophy of sympathetic preganglionic neurons. Thus, BDNF neurons in anterior PVH control energy intake and locomotor activity, whereas those in medial and posterior PVH promote thermogenesis by releasing BDNF into spinal cord to boost sympathetic outflow.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Metabolismo Energético , Comportamento Alimentar , Hipotálamo/citologia , Hipotálamo/fisiologia , Neurônios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Deleção de Genes , Hiperfagia/genética , Hiperfagia/metabolismo , Hiperfagia/patologia , Hipotálamo/patologia , Locomoção , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Termogênese
7.
J Med Genet ; 52(5): 289-96, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25713109

RESUMO

First introduced into mammalian organisms in 2013, the RNA-guided genome editing tool CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9) offers several advantages over conventional ones, such as simple-to-design, easy-to-use and multiplexing (capable of editing multiple genes simultaneously). Consequently, it has become a cost-effective and convenient tool for various genome editing purposes including gene therapy studies. In cell lines or animal models, CRISPR-Cas9 can be applied for therapeutic purposes in several ways. It can correct the causal mutations in monogenic disorders and thus rescue the disease phenotypes, which currently represents the most translatable field in CRISPR-Cas9-mediated gene therapy. CRISPR-Cas9 can also engineer pathogen genome such as HIV for therapeutic purposes, or induce protective or therapeutic mutations in host tissues. Moreover, CRISPR-Cas9 has shown potentials in cancer gene therapy such as deactivating oncogenic virus and inducing oncosuppressor expressions. Herein, we review the research on CRISPR-mediated gene therapy, discuss its advantages, limitations and possible solutions, and propose directions for future research, with an emphasis on the opportunities and challenges of CRISPR-Cas9 in cancer gene therapy.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Terapia Genética , Animais , Linhagem Celular , Técnicas de Transferência de Genes , Genoma , Humanos , Modelos Animais , Edição de RNA
8.
J Med Genet ; 52(1): 17-24, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25391452

RESUMO

Pseudogenes were initially regarded as non-functional genomic fossils resulted from inactivating gene mutations during evolution. However, later studies revealed that they play a plethora of roles at multiple levels (DNA, RNA and/or protein) in diverse physiological and pathological processes, especially in cancer, both parental-gene-dependently and parental-gene-independently. Pseudogenes can interact with parental genes or other gene loci, leading to alteration in their sequences and/or transcriptional activities. Pseudogene-derived RNAs play multifaceted roles in post-transcriptional regulation as antisense RNAs, endogenous small-interference RNAs, competing endogenous RNAs and so on. Pseudogenic proteins can mirror, mimic or interfere with the functions of their parental counterparts. Herein, we discuss the general aspects (origination, classification, identification) of pseudogenes, focus on their multiple functions in cancer pathogenesis and prospect the potentials they hold as molecular signatures assisting in cancer reclassification and tailored therapy.


Assuntos
DNA Intergênico/genética , Modelos Genéticos , Neoplasias/genética , Pseudogenes/genética , Pseudogenes/fisiologia , RNA Antissenso/genética , Humanos , Mutação/genética
9.
Nat Med ; 18(4): 564-71, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426422

RESUMO

Mutations in the Bdnf gene, which produces transcripts with either short or long 3' untranslated regions (3' UTRs), cause human obesity; however, the precise role of brain-derived neurotrophic factor (BDNF) in the regulation of energy balance is unknown. Here we show the relationship between Bdnf mRNA with a long 3' UTR (long 3' UTR Bdnf mRNA), leptin, neuronal activation and body weight. We found that long 3' UTR Bdnf mRNA was enriched in the dendrites of hypothalamic neurons and that insulin and leptin could stimulate its translation in dendrites. Furthermore, mice harboring a truncated long Bdnf 3' UTR developed severe hyperphagic obesity, which was completely reversed by viral expression of long 3' UTR Bdnf mRNA in the hypothalamus. In these mice, the ability of leptin to activate hypothalamic neurons and inhibit food intake was compromised despite normal activation of leptin receptors. These results reveal a novel mechanism linking leptin action to BDNF expression during hypothalamic-mediated regulation of body weight, while also implicating dendritic protein synthesis in this process.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Dendritos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Leptina/farmacologia , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas/genética , Fatores Etários , Análise de Variância , Animais , Peso Corporal/genética , Células Cultivadas , Dendritos/genética , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Hipotálamo/citologia , Insulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Obesidade/genética , Obesidade/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptor de Insulina/metabolismo , Receptor trkB/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Transdução Genética
10.
J Neurochem ; 105(2): 369-79, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18086127

RESUMO

Huntington's disease (HD), a dominantly inherited neurodegenerative disorder characterized by relatively selective degeneration of striatal neurons, is caused by an expanded polyglutamine tract of the huntingtin (htt) protein. The htt mutation reduces levels of brain-derived neurotrophic factor (BDNF) in the striatum, likely by inhibiting cortical BDNF gene expression and anterograde transport of BDNF from cortex to striatum. However, roles of the BDNF reduction in HD pathogenesis have not been established conclusively. We reasoned that increasing striatal BDNF through over-expression would slow progression of the disease if BDNF reduction plays a pivotal role in HD pathogenesis. We employed a Bdnf transgene driven by the promoter for the alpha subunit of Ca(2+)/calmodulin-dependent kinase II to over-express BDNF in the forebrain of R6/1 mice which express a fragment of mutant htt with a 116-glutamine tract. The Bdnf transgene increased BDNF levels and TrkB signaling activity in the striatum, ameliorated motor dysfunction, and reversed brain weight loss in R6/1 mice. Furthermore, it normalized DARPP-32 expression of the 32 kDa dopamine and cAMP-regulated phosphoprotein, increased the number of enkephalin-containing boutons, and reduced formation of neuronal intranuclear inclusions in the striatum of R6/1 mice. These results demonstrate crucial roles of reduced striatal BDNF in HD pathogenesis and suggest potential therapeutic values of BDNF to HD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Regulação da Expressão Gênica/fisiologia , Doença de Huntington/patologia , Fenótipo , Prosencéfalo/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Modelos Animais de Doenças , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Encefalinas/genética , Encefalinas/metabolismo , Regulação da Expressão Gênica/genética , Proteína Huntingtina , Doença de Huntington/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
11.
Yonsei Med J ; 48(5): 765-72, 2007 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17963332

RESUMO

PURPOSE: Osteoprotegerin (OPG), a potent inhibitor of osteoclastic bone resorption, has a variety of biological functions that include anti-inflammatory effects. Adipocytes and osteoblasts share a common origin, and the formation of new blood vessels often precedes adipogenesis in developing adipose tissue microvasculature. We examined whether OPG is secreted from adipocytes, therefore contributing to the prevention of neovascularization and protecting the vessels from intimal inflammation and medial calcification. MATERIALS AND METHODS: The mRNA expression of OPG and receptor activator of NF-kappaB ligand (RANKL) was measured in differentiated 3T3L1 adipocytes and adipose tissues. RESULTS: OPG mRNA expression increased with the differentiation of 3T3L1 adipocytes, while RANKL expression was not significantly altered. OPG mRNA was expressed at higher levels in white adipose tissue than in brown adipose tissue and was most abundant in the epididymal portion. In differentiated 3T3L1 adipocytes, Rosiglitazone and insulin reduced the OPG/RANKL expression ratio in a dose- and time- dependent manner. In contrast, tumor necrosis factor-alpha (TNF-alpha) increased the expression of both OPG and RANKL in a time-dependent manner. The OPG/RANKL ratio was at a maximum two hours after TNF-alpha treatment and then returned to control levels. Furthermore, OPG was abundantly secreted into the media after transfection of OPG cDNA with Phi C31 integrase into 3T3L1 cells. CONCLUSION: Our results indicate that OPG mRNA is expressed and regulated in the adipose tissue. Considering the role of OPG in obesity-associated inflammatory changes in adipose tissue and vessels, we speculate that OPG may have both a protective function against inflammation and anti-angiogenic effects on adipose tissue.


Assuntos
Tecido Adiposo/metabolismo , Regulação da Expressão Gênica , Osteoprotegerina/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Adipogenia/genética , Tecido Adiposo/citologia , Animais , Diferenciação Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Masculino , Camundongos , Osteoprotegerina/genética , Ligante RANK/metabolismo , Ratos , Ratos Sprague-Dawley , Rosiglitazona , Tiazolidinedionas/farmacologia , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
12.
Mol Cell Endocrinol ; 206(1-2): 49-62, 2003 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-12943989

RESUMO

Stable rat pituitary tumor cell lines expressing two isoforms of the dopamine D2 receptor, D2L (long) and D2S (short) (the GH3D2L and GH3D2S cell lines, respectively), were established, and the signaling pathway underlying the anti-proliferative and cell death effects of dopaminergic agonists was examined in these cells. After either dopamine or quinpirole treatment, the cell viability decreased significantly only in GH3D2L cells and GH3D2S cells, but not in GH3 cells where D2 receptors are absent. Treatment with haloperidol, a specific D2 receptor antagonist, rescued the dopamine-mediated decreased cell viability in both the GH3D2L and GH3D2S cells. Treatment of these cells with dopamine decreased the DNA synthesis rate, as demonstrated by the incorporation of 5-bromo-2'-deoxyuridine (BrdU). Dopamine-induced cell death was observed in the GH3D2L and GH3D2S cells, and was accompanied by DNA laddering and caspase-3 activation, which were blunted by haloperidol, indicating that dopamine-induced cell death in these cells is mediated by the dopamine D2 receptors. D2 receptor-mediated cell death in these cells correlated with the sustained and enhanced activation of p38 mitogen-activated protein kinase (MAPK) and the extracellular-signal regulated kinase (ERK)1/2 pathways. Treatment with SB203580, which is a specific p38 MAPK inhibitor and PD98059, which is an inhibitor of MEK1/ERK signaling, selectively abrogates dopamine-induced cell death. It was further shown that p38 MAPK and ERK activation was inhibited by the antioxidant, N-acetylcysteine (NAC), and that a treatment with haloperidol completely blocked the p38 and ERK activation induced by dopamine. These results suggest that dopamine induces an anti-proliferative effect and cell death via the dopamine D2 receptors, by means of the p38 MAPK and ERK pathways involving oxidative stress, in the pituitary tumor cells.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias Hipofisárias/patologia , Receptores de Dopamina D2/fisiologia , Animais , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dopamina/farmacologia , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Proteína Quinase 3 Ativada por Mitógeno , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Isoformas de Proteínas/fisiologia , Ratos , Receptores de Dopamina D2/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA