Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Respir Res ; 24(1): 279, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964265

RESUMO

BACKGROUND: Mediastinal lymph node enlargement is prevalent in patients with idiopathic pulmonary fibrosis (IPF). Studies investigating whether this phenomenon reflects specific immunologic activation are lacking. METHODS: Programmed cell death-1 (PD-1)/ programmed cell death ligand-1 (PD-L1) expression in mediastinal lymph nodes and lung tissues was analyzed. PD-1, PD-L1 mRNA expression was measured in tracheobronchial lymph nodes of mice following bleomycin-induced injury on day 14. Finally, the effect of the PD-1 inhibitor, pembrolizumab, in bleomycin-induced pulmonary fibrosis was investigated. RESULTS: We analyzed mediastinal lymph nodes of thirty-three patients (n = 33, IPF: n = 14, lung cancer: n = 10, concomitant IPF and lung cancer: n = 9) and lung tissues of two hundred nineteen patients (n = 219, IPF: 123, controls: 96). PD-1 expression was increased, while PD-L1 expression was decreased, in mediastinal lymph nodes of patients with IPF compared to lung cancer and in IPF lungs compared to control lungs. Tracheobronchial lymph nodes isolated on day 14 from bleomycin-treated mice exhibited increased size and higher PD-1, PD-L1 mRNA levels compared to saline-treated animals. Pembrolizumab blunted bleomycin-induced lung fibrosis, as indicated by reduction in Ashcroft score and improvement in respiratory mechanics. CONCLUSIONS: Mediastinal lymph nodes of patients with IPF exhibit differential expression profiles than those of patients with lung cancer indicating distinct immune-mediated pathways regulating fibrogenesis and carcinogenesis. PD-1 expression in mediastinal lymph nodes is in line with lung tissue expression. Lower doses of pembrolizumab might exert antifibrotic effects. Clinical trials aiming to endotype patients based on mediastinal lymph node profiling and accordingly implement targeted therapies such as PD-1 inhibitors are greatly anticipated.


Assuntos
Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Receptor de Morte Celular Programada 1/genética , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/metabolismo , Bleomicina/toxicidade , Neoplasias Pulmonares/metabolismo , Linfonodos/patologia , RNA Mensageiro/genética
2.
EBioMedicine ; 95: 104766, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37625268

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.


Assuntos
Asma , Fibrose Pulmonar Idiopática , Neoplasias Pulmonares , Humanos , Medicina de Precisão , Genômica , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/etiologia
4.
Cells ; 11(8)2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35456020

RESUMO

Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells.


Assuntos
Fibrose Pulmonar Idiopática , Proteínas de Ligação a Tacrolimo , Humanos , Imunoglobulina G , Peptidilprolil Isomerase/metabolismo , Plasmócitos/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo
5.
Lancet Respir Med ; 5(11): 857-868, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28942086

RESUMO

BACKGROUND: The clinical course of idiopathic pulmonary fibrosis (IPF) is unpredictable. Clinical prediction tools are not accurate enough to predict disease outcomes. METHODS: We enrolled patients with IPF diagnosis in a six-cohort study at Yale University (New Haven, CT, USA), Imperial College London (London, UK), University of Chicago (Chicago, IL, USA), University of Pittsburgh (Pittsburgh, PA, USA), University of Freiburg (Freiburg im Breisgau, Germany), and Brigham and Women's Hospital-Harvard Medical School (Boston, MA, USA). Peripheral blood mononuclear cells or whole blood were collected at baseline from 425 participants and from 98 patients (23%) during 4-6 years' follow-up. A 52-gene signature was measured by the nCounter analysis system in four cohorts and extracted from microarray data (GeneChip) in the other two. We used the Scoring Algorithm for Molecular Subphenotypes (SAMS) to classify patients into low-risk or high-risk groups based on the 52-gene signature. We studied mortality with a competing risk model and transplant-free survival with a Cox proportional hazards model. We analysed timecourse data and response to antifibrotic drugs with linear mixed effect models. FINDINGS: The application of SAMS to the 52-gene signature identified two groups of patients with IPF (low-risk and high-risk), with significant differences in mortality or transplant-free survival in each of the six cohorts (hazard ratio [HR] range 2·03-4·37). Pooled data showed similar results for mortality (HR 2·18, 95% CI 1·53-3·09; p<0·0001) or transplant-free survival (2·04, 1·52-2·74; p<0·0001). Adding 52-gene risk profiles to the Gender, Age, and Physiology index significantly improved its mortality predictive accuracy. Temporal changes in SAMS scores were associated with changes in forced vital capacity (FVC) in two cohorts. Untreated patients did not shift their risk profile over time. A simultaneous increase in up score and decrease in down score was predictive of decreased transplant-free survival (3·18, 1·16-8·76; p=0·025) in the Pittsburgh cohort. A simultaneous decrease in up score and increase in down score after initiation of antifibrotic drugs was associated with a significant (p=0·0050) improvement in FVC in the Yale cohort. INTERPRETATION: The peripheral blood 52-gene expression signature is predictive of outcome in patients with IPF. The potential value of the 52-gene signature in predicting response to therapy should be determined in prospective studies. FUNDING: The Pulmonary Fibrosis Foundation, the Harold Amos Medical Faculty Development Program of the Robert Wood Johnson Foundation, and the National Heart, Lung, and Blood Institute of the US National Institutes of Health.


Assuntos
Perfilação da Expressão Gênica/métodos , Testes Genéticos/métodos , Fibrose Pulmonar Idiopática/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Idoso , Estudos de Coortes , Feminino , Marcadores Genéticos/genética , Humanos , Fibrose Pulmonar Idiopática/mortalidade , Leucócitos Mononucleares , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Medição de Risco/métodos , Fatores de Risco , Fatores de Tempo , Capacidade Vital
6.
Am J Respir Crit Care Med ; 192(4): 455-67, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26039104

RESUMO

RATIONALE: Increased abundance and stiffness of the extracellular matrix, in particular collagens, is a hallmark of idiopathic pulmonary fibrosis (IPF). FK506-binding protein 10 (FKBP10) is a collagen chaperone, mutations of which have been indicated in the reduction of extracellular matrix stiffness (e.g., in osteogenesis imperfecta). OBJECTIVES: To assess the expression and function of FKBP10 in IPF. METHODS: We assessed FKBP10 expression in bleomycin-induced lung fibrosis (using quantitative reverse transcriptase-polymerase chain reaction, Western blot, and immunofluorescence), analyzed microarray data from 99 patients with IPF and 43 control subjects from a U.S. cohort, and performed Western blot analysis from 6 patients with IPF and 5 control subjects from a German cohort. Subcellular localization of FKBP10 was assessed by immunofluorescent stainings. The expression and function of FKBP10, as well as its regulation by endoplasmic reticulum stress or transforming growth factor-ß1, was analyzed by small interfering RNA-mediated loss-of-function experiments, quantitative reverse transcriptase-polymerase chain reaction, Western blot, and quantification of secreted collagens in the lung and in primary human lung fibroblasts (phLF). Effects on collagen secretion were compared with those of the drugs nintedanib and pirfenidone, recently approved for IPF. MEASUREMENTS AND MAIN RESULTS: FKBP10 expression was up-regulated in bleomycin-induced lung fibrosis and IPF. Immunofluorescent stainings demonstrated localization to interstitial (myo)fibroblasts and CD68(+) macrophages. Transforming growth factor-ß1, but not endoplasmic reticulum stress, induced FKBP10 expression in phLF. The small interfering RNA-mediated knockdown of FKBP10 attenuated expression of profibrotic mediators and effectors, including collagens I and V and α-smooth muscle actin, on the transcript and protein level. Importantly, loss of FKBP10 expression significantly suppressed collagen secretion by phLF. CONCLUSIONS: FKBP10 might be a novel drug target for IPF.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Adulto , Animais , Bleomicina , Estudos de Casos e Controles , Técnicas de Cultura de Células , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Feminino , Fibroblastos/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente
7.
Am J Respir Crit Care Med ; 190(7): 780-90, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25250855

RESUMO

RATIONALE: Lung cancer is the leading cause of cancer death in both men and women in the United States and worldwide. Matrix metalloproteinases (MMPs) have been implicated in the development and progression of lung cancer, but their role in the molecular pathogenesis of lung cancer remains unclear. We have found that MMP19, a relatively novel member of the MMP family, is overexpressed in lung tumors when compared with control subjects. OBJECTIVES: To test the hypothesis that MMP19 plays a significant role in the development and progression of non-small cell lung cancer (NSCLC). METHODS: We have analyzed lung cancer gene expression data, immunostained lung tumors for MMP19, and performed in vitro assays to test the effects of MMP19 in NSCLC cells. MEASUREMENTS AND MAIN RESULTS: We found that MMP19 gene and protein expression is increased in lung cancer tumors compared with adjacent and histologically normal lung tissues. In three independent datasets, increased MMP19 gene expression conferred a poorer prognosis in NSCLC. In vitro, we found that overexpression of MMP19 promotes epithelial-mesenchymal transition, migration, and invasiveness in multiple NSCLC cell lines. Overexpression of MMP19 with a mutation at the catalytic site did not impair epithelial-mesenchymal transition or expression of prometastasis genes. We also found that miR-30 isoforms, a microRNA family predicted to target MMP19, is markedly down-regulated in human lung cancer and regulates MMP19 expression. CONCLUSIONS: Taken together, these findings suggest that MMP19 is associated with the development and progression of NSCLC and may be a potential biomarker of disease severity and outcome.


Assuntos
Apoptose/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/secundário , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Metaloproteinases da Matriz Secretadas/genética , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Morte Celular , Linhagem Celular Tumoral , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/mortalidade , Masculino , MicroRNAs/genética , Invasividade Neoplásica/genética , Taxa de Sobrevida
8.
Sci Transl Med ; 5(205): 205ra136, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24089408

RESUMO

We aimed to identify peripheral blood mononuclear cell (PBMC) gene expression profiles predictive of poor outcomes in idiopathic pulmonary fibrosis (IPF) by performing microarray experiments of PBMCs in discovery and replication cohorts of IPF patients. Microarray analyses identified 52 genes associated with transplant-free survival (TFS) in the discovery cohort. Clustering the microarray samples of the replication cohort using the 52-gene outcome-predictive signature distinguished two patient groups with significant differences in TFS. We studied the pathways associated with TFS in each independent microarray cohort and identified decreased expression of "The costimulatory signal during T cell activation" Biocarta pathway and, in particular, the genes CD28, ICOS, LCK, and ITK, results confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). A proportional hazards model, including the qRT-PCR expression of CD28, ICOS, LCK, and ITK along with patient's age, gender, and percent predicted forced vital capacity (FVC%), demonstrated an area under the receiver operating characteristic curve of 78.5% at 2.4 months for death and lung transplant prediction in the replication cohort. To evaluate the potential cellular source of CD28, ICOS, LCK, and ITK expression, we analyzed and found significant correlation of these genes with the PBMC percentage of CD4(+)CD28(+) T cells in the replication cohort. Our results suggest that CD28, ICOS, LCK, and ITK are potential outcome biomarkers in IPF and should be further evaluated for patient prioritization for lung transplantation and stratification in drug studies.


Assuntos
Perfilação da Expressão Gênica , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/terapia , Leucócitos Mononucleares/metabolismo , Biomarcadores/metabolismo , Antígenos CD28/metabolismo , Antígenos CD4/metabolismo , Análise por Conglomerados , Estudos de Coortes , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Resultado do Tratamento
9.
Lancet Respir Med ; 1(4): 309-317, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24429156

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating disease that probably involves several genetic loci. Several rare genetic variants and one common single nucleotide polymorphism (SNP) of MUC5B have been associated with the disease. Our aim was to identify additional common variants associated with susceptibility and ultimately mortality in IPF. METHODS: First, we did a three-stage genome-wide association study (GWAS): stage one was a discovery GWAS; and stages two and three were independent case-control studies. DNA samples from European-American patients with IPF meeting standard criteria were obtained from several US centres for each stage. Data for European-American control individuals for stage one were gathered from the database of genotypes and phenotypes; additional control individuals were recruited at the University of Pittsburgh to increase the number. For controls in stages two and three, we gathered data for additional sex-matched European-American control individuals who had been recruited in another study. DNA samples from patients and from control individuals were genotyped to identify SNPs associated with IPF. SNPs identified in stage one were carried forward to stage two, and those that achieved genome-wide significance (p<5 × 10(-8)) in a meta-analysis were carried forward to stage three. Three case series with follow-up data were selected from stages one and two of the GWAS using samples with follow-up data. Mortality analyses were done in these case series to assess the SNPs associated with IPF that had achieved genome-wide significance in the meta-analysis of stages one and two. Finally, we obtained gene-expression profiling data for lungs of patients with IPF from the Lung Genomics Research Consortium and analysed correlation with SNP genotypes. FINDINGS: In stage one of the GWAS (542 patients with IPF, 542 control individuals matched one-by-one to cases by genetic ancestry estimates), we identified 20 loci. Six SNPs reached genome-wide significance in stage two (544 patients, 687 control individuals): three TOLLIP SNPs (rs111521887, rs5743894, rs5743890) and one MUC5B SNP (rs35705950) at 11p15.5; one MDGA2 SNP (rs7144383) at 14q21.3; and one SPPL2C SNP (rs17690703) at 17q21.31. Stage three (324 patients, 702 control individuals) confirmed the associations for all these SNPs, except for rs7144383. Linkage disequilibrium between the MUC5B SNP (rs35705950) and TOLLIP SNPs (rs111521887 [r(2)=0·07], rs5743894 [r(2)=0·16], and rs5743890 [r(2)=0·01]) was low. 683 patients from the GWAS were included in the mortality analysis. Individuals who developed IPF despite having the protective TOLLIP minor allele of rs5743890 carried an increased mortality risk (meta-analysis with fixed-effect model: hazard ratio 1·72 [95% CI 1·24-2·38]; p=0·0012). TOLLIP expression was decreased by 20% in individuals carrying the minor allele of rs5743890 (p=0·097), 40% in those with the minor allele of rs111521887 (p=3·0 × 10(-4)), and 50% in those with the minor allele of rs5743894 (p=2·93 × 10(-5)) compared with homozygous carriers of common alleles for these SNPs. INTERPRETATION: Novel variants in TOLLIP and SPPL2C are associated with IPF susceptibility. One novel variant of TOLLIP, rs5743890, is also associated with mortality. These associations and the reduced expression of TOLLIP in patients with IPF who carry TOLLIP SNPs emphasise the importance of this gene in the disease. FUNDING: National Institutes of Health; National Heart, Lung, and Blood Institute; Pulmonary Fibrosis Foundation; Coalition for Pulmonary Fibrosis; and Instituto de Salud Carlos III.


Assuntos
DNA/genética , Predisposição Genética para Doença , Variação Genética , Estudo de Associação Genômica Ampla/métodos , Fibrose Pulmonar Idiopática/genética , Adulto , Idoso , Feminino , Genótipo , Humanos , Fibrose Pulmonar Idiopática/mortalidade , Desequilíbrio de Ligação , Masculino , Pessoa de Meia-Idade , Fenótipo , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA