Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 47(D1): D941-D947, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30371878

RESUMO

COSMIC, the Catalogue Of Somatic Mutations In Cancer (https://cancer.sanger.ac.uk) is the most detailed and comprehensive resource for exploring the effect of somatic mutations in human cancer. The latest release, COSMIC v86 (August 2018), includes almost 6 million coding mutations across 1.4 million tumour samples, curated from over 26 000 publications. In addition to coding mutations, COSMIC covers all the genetic mechanisms by which somatic mutations promote cancer, including non-coding mutations, gene fusions, copy-number variants and drug-resistance mutations. COSMIC is primarily hand-curated, ensuring quality, accuracy and descriptive data capture. Building on our manual curation processes, we are introducing new initiatives that allow us to prioritize key genes and diseases, and to react more quickly and comprehensively to new findings in the literature. Alongside improvements to the public website and data-download systems, new functionality in COSMIC-3D allows exploration of mutations within three-dimensional protein structures, their protein structural and functional impacts, and implications for druggability. In parallel with COSMIC's deep and broad variant coverage, the Cancer Gene Census (CGC) describes a curated catalogue of genes driving every form of human cancer. Currently describing 719 genes, the CGC has recently introduced functional descriptions of how each gene drives disease, summarized into the 10 cancer Hallmarks.


Assuntos
Bases de Dados de Ácidos Nucleicos , Mutação , Neoplasias/genética , Genes , Humanos , Conformação Proteica
3.
Prog Biophys Mol Biol ; 128: 3-13, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27913149

RESUMO

Many essential biological processes including cell regulation and signalling are mediated through the assembly of protein complexes. Changes to protein-protein interaction (PPI) interfaces can affect the formation of multiprotein complexes, and consequently lead to disruptions in interconnected networks of PPIs within and between cells, further leading to phenotypic changes as functional interactions are created or disrupted. Mutations altering PPIs have been linked to the development of genetic diseases including cancer and rare Mendelian diseases, and to the development of drug resistance. The importance of these protein mutations has led to the development of many resources for understanding and predicting their effects. We propose that a better understanding of how these mutations affect the structure, function, and formation of multiprotein complexes provides novel opportunities for tackling them, including the development of small-molecule drugs targeted specifically to mutated PPIs.


Assuntos
Saúde , Mutação , Proteínas/genética , Proteínas/metabolismo , Doenças Genéticas Inatas/tratamento farmacológico , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Humanos , Terapia de Alvo Molecular , Ligação Proteica/genética , Proteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA