Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 5: 10, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411395

RESUMO

Skeletal muscle is an ideal target for cell therapy. The use of its potent stem cell population in the form of autologous intramuscular transplantation represents a tantalizing strategy to slow the progression of congenital muscle diseases (such as Duchenne Muscular Dystrophy) or regenerate injured tissue following trauma. The syncytial nature of skeletal muscle uniquely permits the engraftment of stem/progenitor cells to contribute to new myonuclei and restore the expression of genes mutated in myopathies. Historically however, the implementation of this approach has been significantly limited by the inability to expand undifferentiated muscle stem cells (MuSCs) in culture whilst maintaining transplantation potential. This is crucial, as MuSC expansion and/or genetic manipulation is likely necessary for therapeutic applications. In this article, we review recent studies that have provided a number of important breakthroughs to tackle this problem. Progress towards this goal has been achieved by exploiting biochemical, biophysical and developmental paradigms to construct innovative in vitro strategies that are guiding stem cell therapies for muscle repair towards the clinic.

2.
Cell Stem Cell ; 22(2): 177-190.e7, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395054

RESUMO

The development of cell therapy for repairing damaged or diseased skeletal muscle has been hindered by the inability to significantly expand immature, transplantable myogenic stem cells (MuSCs) in culture. To overcome this limitation, a deeper understanding of the mechanisms regulating the transition between activated, proliferating MuSCs and differentiation-primed, poorly engrafting progenitors is needed. Here, we show that methyltransferase Setd7 facilitates such transition by regulating the nuclear accumulation of ß-catenin in proliferating MuSCs. Genetic or pharmacological inhibition of Setd7 promotes in vitro expansion of MuSCs and increases the yield of primary myogenic cell cultures. Upon transplantation, both mouse and human MuSCs expanded with a Setd7 small-molecule inhibitor are better able to repopulate the satellite cell niche, and treated mouse MuSCs show enhanced therapeutic potential in preclinical models of muscular dystrophy. Thus, Setd7 inhibition may help bypass a key obstacle in the translation of cell therapy for muscle disease.


Assuntos
Desenvolvimento Muscular , Proteínas Metiltransferases/antagonistas & inibidores , Transplante de Células-Tronco , Células-Tronco/citologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Linhagem da Célula/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Células Cultivadas , Deleção de Genes , Histona-Lisina N-Metiltransferase , Camundongos , Músculo Esquelético/fisiologia , Proteína MyoD/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteínas Metiltransferases/metabolismo , Pirrolidinas/farmacologia , Regeneração/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Sulfonamidas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , beta Catenina/metabolismo
3.
Cancer Cell ; 26(2): 273-87, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25087979

RESUMO

The role of the Hippo pathway effector YAP1 in soft tissue sarcomas is poorly defined. Here we report that YAP1 activity is elevated in human embryonal rhabdomyosarcoma (ERMS). In mice, sustained YAP1 hyperactivity in activated, but not quiescent, satellite cells induces ERMS with high penetrance and short latency. Via its transcriptional program with TEAD1, YAP1 directly regulates several major hallmarks of ERMS. YAP1-TEAD1 upregulate pro-proliferative and oncogenic genes and maintain the ERMS differentiation block by interfering with MYOD1 and MEF2 pro-differentiation activities. Normalization of YAP1 expression reduces tumor burden in human ERMS xenografts and allows YAP1-driven ERMS to differentiate in situ. Collectively, our results identify YAP1 as a potent ERMS oncogenic driver and a promising target for differentiation therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Transformação Celular Neoplásica/metabolismo , Neoplasias Musculares/metabolismo , Fosfoproteínas/fisiologia , Rabdomiossarcoma Embrionário/metabolismo , Células Satélites de Músculo Esquelético/patologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Dosagem de Genes , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Neoplasias Musculares/mortalidade , Neoplasias Musculares/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteína MyoD , Transplante de Neoplasias , Proteínas Nucleares/metabolismo , Oncogenes , Rabdomiossarcoma Embrionário/mortalidade , Rabdomiossarcoma Embrionário/patologia , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
4.
Sci Signal ; 7(337): re4, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25097035

RESUMO

The discovery of the Hippo pathway can be traced back to two areas of research. Genetic screens in fruit flies led to the identification of the Hippo pathway kinases and scaffolding proteins that function together to suppress cell proliferation and tumor growth. Independent research, often in the context of muscle biology, described Tead (TEA domain) transcription factors, which bind CATTCC DNA motifs to regulate gene expression. These two research areas were joined by the finding that the Hippo pathway regulates the activity of Tead transcription factors mainly through phosphorylation of the transcriptional coactivators Yap and Taz, which bind to and activate Teads. Additionally, many other signal transduction proteins crosstalk to members of the Hippo pathway forming a Hippo signal transduction network. We discuss evidence that the Hippo signal transduction network plays important roles in myogenesis, regeneration, muscular dystrophy, and rhabdomyosarcoma in skeletal muscle, as well as in myogenesis, organ size control, and regeneration of the heart. Understanding the role of Hippo kinases in skeletal and heart muscle physiology could have important implications for translational research.


Assuntos
Coração/fisiologia , Modelos Moleculares , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Coração/embriologia , Via de Sinalização Hippo , Humanos , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Regeneração/fisiologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/fisiopatologia , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
5.
FEBS J ; 280(17): 4100-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23763717

RESUMO

Although the regenerative potential of adult skeletal muscle is maintained by satellite cells, other stem/progenitor cell populations also reside in skeletal muscle. These heterogeneous cellular pools with mesenchymal lineage potentially play important roles in tissue homeostasis, with reciprocal collaborations between these cells and satellite cells appearing critical for effective regeneration. However, in disease settings, these mesenchymal stem/progenitors adopt a more sinister role - likely providing a major source of fibrosis, fatty tissue and extracellular matrix protein deposition in dystrophic tissue. Development of therapies for muscle degeneration therefore requires complete understanding of the multiple cell types involved and their complex interactions.


Assuntos
Células-Tronco Mesenquimais/citologia , Desenvolvimento Muscular/fisiologia , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Animais , Diferenciação Celular , Humanos , Células-Tronco Mesenquimais/fisiologia , Células Satélites de Músculo Esquelético/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA