Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1291990, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179052

RESUMO

Inflammatory bowel disease (IBD) is an umbrella term for two conditions (Crohn's Disease and Ulcerative Colitis) that is characterized by chronic inflammation of the gastrointestinal tract. The use of pre-clinical animal models has been invaluable for the understanding of potential disease mechanisms. However, despite promising results of numerous therapeutics in mouse colitis models, many of these therapies did not show clinical benefits in patients with IBD. Single cell RNA-sequencing (scRNA-seq) has recently revolutionized our understanding of complex interactions between the immune system, stromal cells, and epithelial cells by mapping novel cell subpopulations and their remodeling during disease. This technology has not been widely applied to pre-clinical models of IBD. ScRNA-seq profiling of murine models may provide an opportunity to increase the translatability into the clinic, and to choose the most appropriate model to test hypotheses and novel therapeutics. In this review, we have summarized some of the key findings at the single cell transcriptomic level in IBD, how specific signatures have been functionally validated in vivo, and highlighted the similarities and differences between scRNA-seq findings in human IBD and experimental mouse models. In each section of this review, we highlight the importance of utilizing this technology to find the most suitable or translational models of IBD based on the cellular therapeutic target.


Assuntos
Colite Ulcerativa , Colite , Doença de Crohn , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/tratamento farmacológico , RNA
2.
Sci Immunol ; 7(75): eabl8357, 2022 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-36149942

RESUMO

The molecular programs involved in regulatory T (Treg) cell activation and homeostasis remain incompletely understood. Here, we show that T cell receptor (TCR) signaling in Treg cells induces the nuclear translocation of serine/threonine kinase 4 (Stk4), leading to the formation of an Stk4-NF-κB p65-Foxp3 complex that regulates Foxp3- and p65-dependent transcriptional programs. This complex was stabilized by Stk4-dependent phosphorylation of Foxp3 on serine-418. Stk4 deficiency in Treg cells, either alone or in combination with its homolog Stk3, precipitated a fatal autoimmune lymphoproliferative disease in mice characterized by decreased Treg cell p65 expression and nuclear translocation, impaired NF-κB p65-Foxp3 complex formation, and defective Treg cell activation. In an adoptive immunotherapy model, overexpression of p65 or the phosphomimetic Foxp3S418E in Stk3/4-deficient Treg cells ameliorated their immune regulatory defects. Our studies identify Stk4 as an essential TCR-responsive regulator of p65-Foxp3-dependent transcription that promotes Treg cell-mediated immune tolerance.


Assuntos
Fatores de Transcrição Forkhead , NF-kappa B , Proteínas Serina-Treonina Quinases , Linfócitos T Reguladores , Animais , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Serina , Linfócitos T Reguladores/citologia , Fator de Transcrição RelA
3.
Curr Cancer Drug Targets ; 21(6): 495-513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475062

RESUMO

BACKGROUND: Redox dysregulation originating from metabolic alterations in cancer cells contributes to their proliferation, invasion, and resistance to therapy. Conversely, these features represent a specific vulnerability of malignant cells that can be selectively targeted by redox chemotherapeutics. Amongst them, Vitamin K (VitK) carries the potential against cancer stem cells, in addition to the rest of tumor mass. OBJECTIVES: To assess the possible benefits and safety of VitK for cancer treatment using a systematic review and meta-analysis with a mixed-methods approach. METHODS: We performed a systematic search on several electronic databases for studies comparing VitK treatment with and without combination to the control groups. For quantitative studies, fully or partially reported clinical outcomes such as recurrence rates, survival, overall response and adverse reactions were assessed. For qualitative studies, a narrative synthesis was accomplished. RESULTS: Our analysis suggested that the clinical outcome of efficacy, the pooled hazard ratio for progression-free survival, and the pooled relative risk for overall survival, and overall response were significantly higher in the VitK therapy group compared to the placebo group (p<0.05). We did not observe any significant difference in the occurrence of adverse events between groups. Among qualitative studies, VitK treatment targeting myelodysplastic syndrome and advanced solid tumors resulted in 24.1% and 10% of clinical response, respectively. CONCLUSION: VitK not only exerts antitumor effects against a wide range of tumor types, but it also has excellent synergism with other therapeutic agents.


Assuntos
Neoplasias , Vitamina K , Humanos , Neoplasias/tratamento farmacológico
4.
Front Aging Neurosci ; 11: 177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31440155

RESUMO

Glutathione (GSH) is one of the most abundant thiol antioxidants in cells. Many chronic and age-related diseases are associated with a decline in cellular GSH levels or impairment in the catalytic activity of the GSH biosynthetic enzyme glutamate cysteine ligase (GCL). γ-glutamylcysteine (GGC), a precursor to glutathione (GSH), can replenish depleted GSH levels under oxidative stress conditions, by circumventing the regulation of GSH biosynthesis and providing the limiting substrate. Soluble amyloid-ß (Aß) oligomers have been shown to induce oxidative stress, synaptic dysfunction and memory deficits which have been reported in Alzheimer's disease (AD). Calcium ions, which are increased with age and in AD, have been previously reported to enhance the formation of Aß40 oligomers, which have been casually associated with the pathogenesis of the underlying neurodegenerative condition. In this study, we examined the potential beneficial effects of GGC against exogenous Aß40 oligomers on biomarkers of apoptosis and cell death, oxidative stress, and neuroinflammation, in human astrocytes. Treatment with Aß40 oligomers significantly reduced the cell viability and apoptosis of astrocyte brain cultures and increased oxidative modifications of DNA, lipids, and protein, enhanced pro-inflammatory cytokine release and increased the activity of the proteolytic matrix metalloproteinase enzyme, matric metalloproteinase (MMP)-2 and reduced the activity of MMP-9 after 24 h. Co-treatment of Aß40 oligomers with GGC at 200 µM increased the activity of the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) and led to significant increases in the levels of the total antioxidant capacity (TAC) and GSH and reduced the GSSG/GSH ratio. GGC also upregulated the level of the anti-inflammatory cytokine IL-10 and reduced the levels of the pro-inflammatory cytokines (TNF-α, IL-6, and IL-1ß) and attenuated the changes in metalloproteinase activity in oligomeric Aß40-treated astrocytes. Our data provides renewed insight on the beneficial effects of increased GSH levels by GGC in human astrocytes, and identifies yet another potential therapeutic strategy to attenuate the cytotoxic effects of Aß oligomers in AD.

5.
Front Aging Neurosci ; 9: 66, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28405187

RESUMO

The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer's disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus-a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aß42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5'-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related.

6.
Curr Alzheimer Res ; 14(8): 861-869, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28176625

RESUMO

Tannic acid (TA) is a naturally occurring plant-derived polyphenol found in several herbaceous and woody plants, including legumes, sorghum, beans, bananas, persimmons, rasberries, wines and a broad selection of teas. Clinically, TA has strong antioxidant/free radical scavenging, antiinflammatory, anti-viral/bacterial, and anti-carcinogenic properties. While the aetiology of Alzheimer's disease (AD) remains unclear, this complex multifactorial neurodegenerative disorder remains the most common form of dementia, and is a growing public health concern worldwide. The neuroprotective effects of TA against AD have been shown in several in vitro and in vivo models of AD. Apart from its potent antioxidant and anti-inflammatory roles, evidence suggests that TA is also a natural inhibitor of ß-secretase (BACE1) activity and protein expression. BACE1 is the primary enzyme responsible for the production and deposition of Aß peptide. TA also destabilises neurotoxic amyloid beta (Aß) fibrils in vitro. Apart from its effects on the Aß cascade, TA can also inhibit the in vitro aggregation of tau peptide, a core component of intracellular neurofibrillary tangles (NFTs). This review summarizes the relevance of TA and TA-related vegetable extracts (tannins) in the pathogenesis of AD and its enzymatic targets. It also highlights the significance of TA as an important lead compound against AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Taninos/uso terapêutico , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Humanos , Fármacos Neuroprotetores/química , Taninos/química
7.
Neurotox Res ; 30(4): 620-632, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27510585

RESUMO

The kynurenine (KYN) pathway (KP) is a major degradative pathway of the amino acid, L-tryptophan (TRP), that ultimately leads to the anabolism of the essential pyridine nucleotide, nicotinamide adenine dinucleotide. TRP catabolism results in the production of several important metabolites, including the major immune tolerance-inducing metabolite KYN, and the neurotoxin and excitotoxin quinolinic acid. Dendritic cells (DCs) have been shown to mediate immunoregulatory roles that mediated by TRP catabolism. However, characterization of the KP in human DCs has so far only been partly delineated. It is critical to understand which KP enzymes are expressed and which KP metabolites are produced to be able to understand their regulatory effects on the immune response. In this study, we characterized the KP in human monocyte-derived DCs (MDDCs) in comparison with the human primary macrophages using RT-PCR, high-pressure gas chromatography, mass spectrometry, and immunocytochemistry. Our results show that the KP is entirely expressed in human MDDC. Following activation of the KP using interferon gamma, MDDCs can mediate apoptosis of T h cells in vitro. Understanding the molecular mechanisms regulating KP metabolism in MDDCs may provide renewed insight for the development of novel therapeutics aimed at modulating immunological effects and peripheral tolerance.


Assuntos
Células Dendríticas/enzimologia , Fatores Imunológicos/farmacologia , Interferon gama/farmacologia , Cinurenina/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/enzimologia , Antígenos CD8/análise , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cromatografia Gasosa , Cromatografia Líquida de Alta Pressão , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Cinurenina/antagonistas & inibidores , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Espectrometria de Massas , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo
8.
Curr Top Med Chem ; 16(17): 1951-60, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845555

RESUMO

Resveratrol (3,4',5-trihydroxystilbene) is a naturally occurring phytochemical present in red wine, grapes, berries, chocolate and peanuts. Clinically, resveratrol has exhibited significant antioxidant, anti-inflammatory, anti-viral, and anti-cancer properties. Although resveratrol was first isolated in 1940, it was not until the last decade that it was recognised for its potential therapeutic role in reducing the risk of neurodegeneration, and Alzheimer's disease (AD) in particular. AD is the primary cause of progressive dementia. Resveratrol has demonstrated neuroprotective effects in several in vitro and in vivo models of AD. Apart from its potent antioxidant and anti-inflammatory roles, evidence suggests that resveratrol also facilitates non-amyloidogenic breakdown of the amyloid precursor protein (APP), and promotes removal of neurotoxic amyloid beta (Aß) peptides, a critical step in preventing and slowing down AD pathology. Resveratrol also reduces damage to neuronal cells via a variety of additional mechanisms, most notably is the activation of NAD(+)-dependent histone deacetylases enzymes, termed sirtuins. However in spite of the considerable advances in clarifying the mechanism of action of resveratrol, it is unlikely to be effective as monotherapy in AD due to its poor bioavailability, biotransformation, and requisite synergism with other dietary factors. This review summarizes the relevance of resveratrol in the pathophysiology of AD. It also highlights why resveratrol alone may not be an effective single therapy, and how resveratrol coupled to other compounds might yet prove an effective therapy with multiple targets.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Estilbenos/uso terapêutico , Precursor de Proteína beta-Amiloide/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Antioxidantes/farmacologia , Humanos , Fármacos Neuroprotetores/farmacologia , Resveratrol , Estilbenos/farmacologia
9.
Trends Biotechnol ; 33(10): 595-610, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26409778

RESUMO

Halogenated organic compounds (organohalides) are globally prevalent, recalcitrant toxic, and carcinogenic environmental pollutants. Select microorganisms encode enzymes known as reductive dehalogenases (EC 1.97.1.8) that catalyze reductive dehalogenation reactions resulting in the generation of lesser-halogenated compounds that may be less toxic and more biodegradable. Recent breakthroughs in enzyme structure determination, elucidation of the mechanisms of reductive dehalogenation, and in heterologous expression of functional reductive dehalogenase enzymes have substantially increased our understanding of this fascinating class of enzymes. This knowledge has created opportunities for more versatile (in situ and ex situ) biologically-mediated organohalide destruction strategies.


Assuntos
Proteínas de Bactérias/química , Poluentes Ambientais/metabolismo , Regulação Bacteriana da Expressão Gênica , Hidrocarbonetos Halogenados/metabolismo , Hidrolases/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Biodegradação Ambiental , Domínio Catalítico , Chloroflexi/enzimologia , Chloroflexi/genética , Clostridiales/enzimologia , Clostridiales/genética , Desulfitobacterium/enzimologia , Desulfitobacterium/genética , Poluentes Ambientais/química , Hidrocarbonetos Halogenados/química , Hidrolases/genética , Hidrolases/metabolismo , Hidrólise , Modelos Moleculares , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA