Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(7): 1639-1650, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38411137

RESUMO

The autophagosomal SNARE STX17 (syntaxin 17) promotes lysosomal fusion and degradation, but its autophagosomal recruitment is incompletely understood. Notably, PtdIns4P is generated on autophagosomes and promotes fusion through an unknown mechanism. Here we show that soluble recombinant STX17 is spontaneously recruited to negatively charged liposomes and adding PtdIns4P to liposomes containing neutral lipids is sufficient for its recruitment. Consistently, STX17 colocalizes with PtdIns4P-positive autophagosomes in cells, and specific inhibition of PtdIns4P synthesis on autophagosomes prevents its loading. Molecular dynamics simulations indicate that C-terminal positively charged amino acids establish contact with membrane bilayers containing negatively charged PtdIns4P. Accordingly, Ala substitution of Lys and Arg residues in the C terminus of STX17 abolishes membrane binding and impairs its autophagosomal recruitment. Finally, only wild type but not Ala substituted STX17 expression rescues the autophagosome-lysosome fusion defect of STX17 loss-of-function cells. We thus identify a key step of autophagosome maturation that promotes lysosomal fusion.Abbreviations: Cardiolipin: 1',3'-bis[1-palmitoyl-2-oleoyl-sn-glycero-3-phospho]-glycerol; DMSO: dimethyl sulfoxide; GST: glutathione S-transferase; GUV: giant unilamellar vesicles; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; PA: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphate; PC/POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine; PG: 1-palmitoyl-2-linoleoyl-sn-glycero-3-phospho-(1'-rac-glycerol); PI: L-α-phosphatidylinositol; PI4K2A: phosphatidylinositol 4-kinase type 2 alpha; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; POPE/PE: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine; PS: 1-stearoyl-2-linoleoyl-sn-glycero-3-phospho-L-serine; PtdIns(3,5)P2: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-3',5'-bisphosphate); PtdIns3P: 1,2- dioleoyl-sn-glycero-3-phospho-(1'-myo-inositol-3'-phosphate); PtdIns4P: 1,2-dioleoyl-sn-glycero-3-phospho-(1"-myo-inositol-4'-phosphate); SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; STX17: syntaxin 17.


Assuntos
Autofagossomos , Lisossomos , Fusão de Membrana , Fosfatos de Fosfatidilinositol , Proteínas Qa-SNARE , Lisossomos/metabolismo , Humanos , Autofagossomos/metabolismo , Fusão de Membrana/efeitos dos fármacos , Proteínas Qa-SNARE/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Autofagia/fisiologia , Autofagia/efeitos dos fármacos , Lipossomos/metabolismo , Simulação de Dinâmica Molecular , Células HeLa
2.
Fluids Barriers CNS ; 21(1): 6, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212833

RESUMO

BACKGROUND: The brain extracellular fluid (ECF), composed of secreted neurotransmitters, metabolites, peptides, and proteins, may reflect brain processes. Analysis of brain ECF may provide new potential markers for synaptic activity or brain damage and reveal additional information on pathological alterations. Epileptic seizure induction is an acute and harsh intervention in brain functions, and it can activate extra- and intracellular proteases, which implies an altered brain secretome. Thus, we applied a 4-aminopyridine (4-AP) epilepsy model to study the hippocampal ECF peptidome alterations upon treatment in rats. METHODS: We performed in vivo microdialysis in the hippocampus for 3-3 h of control and 4-AP treatment phase in parallel with electrophysiology measurement. Then, we analyzed the microdialysate peptidome of control and treated samples from the same subject by liquid chromatography-coupled tandem mass spectrometry. We analyzed electrophysiological and peptidomic alterations upon epileptic seizure induction by two-tailed, paired t-test. RESULTS: We detected 2540 peptides in microdialysate samples by mass spectrometry analysis; and 866 peptides-derived from 229 proteins-were found in more than half of the samples. In addition, the abundance of 322 peptides significantly altered upon epileptic seizure induction. Several proteins of significantly altered peptides are neuropeptides (Chgb) or have synapse- or brain-related functions such as the regulation of synaptic vesicle cycle (Atp6v1a, Napa), astrocyte morphology (Vim), and glutamate homeostasis (Slc3a2). CONCLUSIONS: We have detected several consequences of epileptic seizures at the peptidomic level, as altered peptide abundances of proteins that regulate epilepsy-related cellular processes. Thus, our results indicate that analyzing brain ECF by in vivo microdialysis and omics techniques is useful for monitoring brain processes, and it can be an alternative method in the discovery and analysis of CNS disease markers besides peripheral fluid analysis.


Assuntos
Epilepsia , Espaço Extracelular , Ratos , Animais , Espaço Extracelular/metabolismo , Uretana/metabolismo , Convulsões/induzido quimicamente , Epilepsia/induzido quimicamente , Epilepsia/metabolismo , Epilepsia/patologia , 4-Aminopiridina/metabolismo , 4-Aminopiridina/farmacologia , Peptídeos/química , Peptídeos/metabolismo , Amidas/metabolismo , Hipocampo/metabolismo
3.
Front Cell Dev Biol ; 11: 1281487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020911

RESUMO

Glutamate dehydrogenases are enzymes that take part in both amino acid and energy metabolism. Their role is clear in many biological processes, from neuronal function to cancer development. The putative testis-specific Drosophila glutamate dehydrogenase, Bb8, is required for male fertility and the development of mitochondrial derivatives in spermatids. Testis-specific genes are less conserved and could gain new functions, thus raising a question whether Bb8 has retained its original enzymatic activity. We show that while Bb8 displays glutamate dehydrogenase activity, there are significant functional differences between the housekeeping Gdh and the testis-specific Bb8. Both human GLUD1 and GLUD2 can rescue the bb8 ms mutant phenotype, with superior performance by GLUD2. We also tested the role of three conserved amino acids observed in both Bb8 and GLUD2 in Gdh mutants, which showed their importance in the glutamate dehydrogenase function. The findings of our study indicate that Drosophila Bb8 and human GLUD2 could be novel examples of convergent molecular evolution. Furthermore, we investigated the importance of glutamate levels in mitochondrial homeostasis during spermatogenesis by ectopic expression of the mitochondrial glutamate transporter Aralar1, which caused mitochondrial abnormalities in fly spermatids. The data presented in our study offer evidence supporting the significant involvement of glutamate metabolism in sperm development.

4.
Mol Neurobiol ; 59(2): 1301-1319, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34988919

RESUMO

Sleep deprivation (SD) is commonplace in the modern way of life and has a substantial social, medical, and human cost. Sleep deprivation induces cognitive impairment such as loss of executive attention, working memory decline, poor emotion regulation, increased reaction times, and higher cognitive functions are particularly vulnerable to sleep loss. Furthermore, SD is associated with obesity, diabetes, cardiovascular diseases, cancer, and a vast majority of psychiatric and neurodegenerative disorders are accompanied by sleep disturbances. Despite the widespread scientific interest in the effect of sleep loss on synaptic function, there is a lack of investigation focusing on synaptic transmission on the proteome level. In the present study, we report the effects of SD and recovery period (RP) on the cortical synaptic proteome in rats. Synaptosomes were isolated after 8 h of SD performed by gentle handling and after 16 h of RP. The purity of synaptosome fraction was validated with western blot and electron microscopy, and the protein abundance alterations were analyzed by mass spectrometry. We observed that SD and RP have a wide impact on neurotransmitter-related proteins at both the presynaptic and postsynaptic membranes. The abundance of synaptic proteins has changed to a greater extent in consequence of SD than during RP: we identified 78 proteins with altered abundance after SD and 39 proteins after the course of RP. Levels of most of the altered proteins were upregulated during SD, while RP showed the opposite tendency, and three proteins (Gabbr1, Anks1b, and Decr1) showed abundance changes with opposite direction after SD and RP. The functional cluster analysis revealed that a majority of the altered proteins is related to signal transduction and regulation, synaptic transmission and synaptic assembly, protein and ion transport, and lipid and fatty acid metabolism, while the interaction network analysis revealed several connections between the significantly altered proteins and the molecular processes of synaptic plasticity or sleep. Our proteomic data implies suppression of SNARE-mediated synaptic vesicle exocytosis and impaired endocytic processes after sleep deprivation. Both SD and RP altered GABA neurotransmission and affected protein synthesis, several regulatory processes and signaling pathways, energy homeostatic processes, and metabolic pathways.


Assuntos
Proteoma , Privação do Sono , Animais , Córtex Cerebral/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Ratos , Privação do Sono/metabolismo , Sinapses/metabolismo
5.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638976

RESUMO

Lysosomal degradation, the common destination of autophagy and endocytosis, is one of the most important elements of eukaryotic metabolism. The small GTPases Rab39A and B are potential new effectors of this pathway, as their malfunction is implicated in severe human diseases like cancer and neurodegeneration. In this study, the lysosomal regulatory role of the single Drosophila Rab39 ortholog was characterized, providing valuable insight into the potential cell biological mechanisms mediated by these proteins. Using a de novo CRISPR-generated rab39 mutant, we found no failure in the early steps of endocytosis and autophagy. On the contrary, we found that Rab39 mutant nephrocytes internalize and degrade endocytic cargo at a higher rate compared to control cells. In addition, Rab39 mutant fat body cells contain small yet functional autolysosomes without lysosomal fusion defect. Our data identify Drosophila Rab39 as a negative regulator of lysosomal clearance during both endocytosis and autophagy.


Assuntos
Autofagia/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Endocitose/genética , Lisossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Proteínas de Drosophila/genética , Larva/enzimologia , Larva/genética , Fenótipo , Proteínas rab de Ligação ao GTP/genética
6.
EMBO J ; 40(19): e108863, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34459017

RESUMO

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Assuntos
Autofagia , Suscetibilidade a Doenças , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Autofagia/imunologia , Biomarcadores , Regulação da Expressão Gênica , Predisposição Genética para Doença , Homeostase , Interações Hospedeiro-Patógeno , Humanos , Especificidade de Órgãos , Transdução de Sinais
7.
Sci Rep ; 11(1): 8422, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875704

RESUMO

The human orthologue of the tumor suppressor protein FBW7 is encoded by the Drosophila archipelago (ago) gene. Ago is an F-box protein that gives substrate specificity to its SCF ubiquitin ligase complex. It has a central role in multiple biological processes in a tissue-specific manner such as cell proliferation, cellular differentiation, hypoxia-induced gene expression. Here we present a previously unknown tissue-specific role of Ago in spermatid differentiation. We identified a classical mutant of ago which is semi-lethal and male-sterile. During the characterization of ago function in testis, we found that ago plays role in spermatid development, following meiosis. We confirmed spermatogenesis defects by silencing ago by RNAi in testes. The ago mutants show multiple abnormalities in elongating and elongated spermatids, including aberration of the cyst morphology, malformed mitochondrial structures, and individualization defects. Additionally, we determined the subcellular localization of Ago protein with mCherry-Ago transgene in spermatids. Our findings highlight the potential roles of Ago in different cellular processes of spermatogenesis, like spermatid individualization, and regulation of mitochondrial morphology.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Proteínas F-Box , Espermatogênese/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Genes Supressores de Tumor , Infertilidade Masculina/genética , Masculino , Mitocôndrias , Mutação , Interferência de RNA , Espermátides/citologia , Testículo/citologia , Testículo/metabolismo
8.
FEBS J ; 288(1): 190-211, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32248620

RESUMO

Warburg micro syndrome (WMS) is a hereditary autosomal neuromuscular disorder in humans caused by mutations in Rab18, Rab3GAP1, or Rab3GAP2 genes. Rab3GAP1/2 forms a heterodimeric complex, which acts as a guanosine nucleotide exchange factor and activates Rab18. Although the genetic causes of WMS are known, it is still unclear whether loss of the Rab3GAP-Rab18 module affects neuronal or muscle cell physiology or both, and how. In this work, we characterize a Rab3GAP2 mutant Drosophila line to establish a novel animal model for WMS. Similarly to symptoms of WMS, loss of Rab3GAP2 leads to highly decreased motility in Drosophila that becomes more serious with age. We demonstrate that these mutant flies are defective for autophagic degradation in multiple tissues including fat cells and muscles. Loss of Rab3GAP-Rab18 module members leads to perturbed autolysosome morphology due to destabilization of Rab7-positive autophagosomal and late endosomal compartments and perturbation of lysosomal biosynthetic transport. Importantly, overexpression of UVRAG or loss of Atg14, two alternative subunits of the Vps34/PI3K (vacuole protein sorting 34/phosphatidylinositol 3-kinase) complexes in fat cells, mimics the autophagic phenotype of Rab3GAP-Rab18 module loss. We find that GTP-bound Rab18 binds to Atg6/Beclin1, a permanent subunit of Vps34 complexes. Finally, we show that Rab3GAP2 and Rab18 are present on autophagosomal and autolysosomal membranes and colocalize with Vps34 Complex I subunits. Our data suggest that the Rab3GAP-Rab18 module regulates autolysosomal maturation through its interaction with the Vps34 Complex I, and perturbed autophagy due to loss of the Rab3GAP-Rab18 module may contribute to the development of WMS.


Assuntos
Anormalidades Múltiplas/genética , Catarata/congênito , Classe III de Fosfatidilinositol 3-Quinases/genética , Córnea/anormalidades , Proteínas de Drosophila/genética , Hipogonadismo/genética , Deficiência Intelectual/genética , Lisossomos/metabolismo , Microcefalia/genética , Atrofia Óptica/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab3 de Ligação ao GTP/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Animais , Autofagia/genética , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Catarata/genética , Catarata/metabolismo , Catarata/patologia , Classe III de Fosfatidilinositol 3-Quinases/deficiência , Córnea/metabolismo , Córnea/patologia , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Regulação da Expressão Gênica , Humanos , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Lisossomos/patologia , Microcefalia/metabolismo , Microcefalia/patologia , Músculos/metabolismo , Músculos/patologia , Neurônios/metabolismo , Neurônios/patologia , Atrofia Óptica/metabolismo , Atrofia Óptica/patologia , Ligação Proteica , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas rab de Ligação ao GTP/deficiência , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab3 de Ligação ao GTP/deficiência , proteínas de unión al GTP Rab7
9.
Redox Biol ; 38: 101808, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33264701

RESUMO

Ultraviolet B radiation (UVB) is an environmental complete carcinogen, which induces and promotes keratinocyte carcinomas, the most common human malignancies. UVB induces the formation of cyclobutane pyrimidine dimers (CPDs). Repairing CPDs through nucleotide excision repair is slow and error-prone in placental mammals. In addition to the mutagenic and malignancy-inducing effects, UVB also elicits poorly understood complex metabolic changes in keratinocytes, possibly through CPDs. To determine the effects of CPDs, CPD-photolyase was overexpressed in keratinocytes using an N1-methyl pseudouridine-containing in vitro-transcribed mRNA. CPD-photolyase, which is normally not present in placental mammals, can efficiently and rapidly repair CPDs to block signaling pathways elicited by CPDs. Keratinocytes surviving UVB irradiation turn hypermetabolic. We show that CPD-evoked mitochondrial reactive oxygen species production, followed by the activation of several energy sensor enzymes, including sirtuins, AMPK, mTORC1, mTORC2, p53, and ATM, is responsible for the compensatory metabolic adaptations in keratinocytes surviving UVB irradiation. Compensatory metabolic changes consist of enhanced glycolytic flux, Szent-Györgyi-Krebs cycle, and terminal oxidation. Furthermore, mitochondrial fusion, mitochondrial biogenesis, and lipophagy characterize compensatory hypermetabolism in UVB-exposed keratinocytes. These properties not only support the survival of keratinocytes, but also contribute to UVB-induced differentiation of keratinocytes. Our results indicate that CPD-dependent signaling acutely maintains skin integrity by supporting cellular energy metabolism.


Assuntos
Dano ao DNA , Dímeros de Pirimidina , Animais , Reparo do DNA , Feminino , Humanos , Queratinócitos/metabolismo , Estresse Oxidativo , Placenta/metabolismo , Gravidez , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta/efeitos adversos
10.
Placenta ; 99: 197-207, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747003

RESUMO

INTRODUCTION: Placental Protein 1 (PP1), PP8, and PP22 were isolated from the placenta. Herein, we aimed to identify PP1, PP8, and PP22 proteins and their placental and trophoblastic expression patterns to reveal potential involvement in pregnancy complications. METHODS: We analyzed PP1, PP8, and PP22 proteins with LC-MS. We compared the placental behaviors of PP1, PP8, and PP22 to the predominantly placenta-expressed PP5/TFPI-2. Placenta-specificity scores were generated from microarray data. Trophoblasts were isolated from healthy placentas and differentiated; total RNA was isolated and subjected to microarray analysis. We assigned the placentas to the following groups: preterm controls, early-onset preeclampsia, early-onset preeclampsia with HELLP syndrome, term controls, and late-onset preeclampsia. After histopathologic examination, placentas were used for tissue microarray construction, immunostaining with anti-PP1, anti-PP5, anti-PP8, or anti-PP22 antibodies, and immunoscoring. RESULTS: PP1, PP8, and PP22 were identified as 'nicotinate-nucleotide pyrophosphorylase', 'serpin B6', and 'protein disulfide-isomerase', respectively. Genes encoding PP1, PP8, and PP22 are not predominantly placenta-expressed, in contrast with PP5. PP1, PP8, and PP22 mRNA expression levels did not increase during trophoblast differentiation, in contrast with PP5. PP1, PP8, and PP22 immunostaining were detected primarily in trophoblasts, while PP5 expression was restricted to the syncytiotrophoblast. The PP1 immunoscore was higher in late-onset preeclampsia, while the PP5 immunoscore was higher in early-onset preeclampsia. DISCUSSION: PP1, PP8, and PP22 are expressed primarily in trophoblasts but do not have trophoblast-specific regulation or functions. The distinct dysregulation of PP1 and PP5 expression in either late-onset or early-onset preeclampsia reflects different pathophysiological pathways in these preeclampsia subsets.


Assuntos
Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Proteínas da Gravidez/metabolismo , Adulto , Cromatografia Líquida , Feminino , Humanos , Espectrometria de Massas , Gravidez , Proteômica
11.
Cells ; 9(2)2020 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046043

RESUMO

Poly(ADP-Ribose) polymerases (PARPs) are enzymes that metabolize NAD+. PARP1 and PARP10 were previously implicated in the regulation of autophagy. Here we showed that cytosolic electron-dense particles appear in the cytoplasm of C2C12 myoblasts in which PARP2 is silenced by shRNA. The cytosolic electron-dense bodies resemble autophagic vesicles and, in line with that, we observed an increased number of LC3-positive and Lysotracker-stained vesicles. Silencing of PARP2 did not influence the maximal number of LC3-positive vesicles seen upon chloroquine treatment or serum starvation, suggesting that the absence of PARP2 inhibits autophagic breakdown. Silencing of PARP2 inhibited the activity of AMP-activated kinase (AMPK) and the mammalian target of rapamycin complex 2 (mTORC2). Treatment of PARP2-silenced C2C12 cells with AICAR, an AMPK activator, nicotinamide-riboside (an NAD+ precursor), or EX-527 (a SIRT1 inhibitor) decreased the number of LC3-positive vesicles cells to similar levels as in control (scPARP2) cells, suggesting that these pathways inhibit autophagic flux upon PARP2 silencing. We observed a similar increase in the number of LC3 vesicles in primary PARP2 knockout murine embryonic fibroblasts. We provided evidence that the enzymatic activity of PARP2 is important in regulating autophagy. Finally, we showed that the silencing of PARP2 induces myoblast differentiation. Taken together, PARP2 is a positive regulator of autophagic breakdown in mammalian transformed cells and its absence blocks the progression of autophagy.


Assuntos
Autofagia , Inativação Gênica , Poli(ADP-Ribose) Polimerases/genética , Proteólise , Adenilato Quinase/metabolismo , Animais , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Cloroquina/farmacologia , Meios de Cultura Livres de Soro , Citosol/metabolismo , Citosol/ultraestrutura , Embrião de Mamíferos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Deleção de Genes , Inativação Gênica/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Desenvolvimento Muscular/efeitos dos fármacos , NAD/metabolismo , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Proteólise/efeitos dos fármacos , Sirtuína 1/metabolismo
12.
J Innate Immun ; 12(3): 257-272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31553970

RESUMO

Previously, a novel cell type, the multinucleated giant hemocyte (MGH) was identified in the ananassae subgroup of Drosophilidae. These cells share several features with mammalian multinucleated giant cells, a syncytium of macrophages formed during granulomatous inflammation. We were able to show that MGHs also differentiate in Zaprionus indianus, an invasive species belonging to the vittiger subgroup of the family, highly resistant to a large number of parasitoid wasp species. We have classified the MGHs of Z. indianusas giant hemocytes belonging to a class of cells which also include elongated blood cells carrying a single nucleus and anuclear structures. They are involved in encapsulating parasites, originate from the lymph gland, can develop by cell fusion, and generally carry many nuclei, while possessing an elaborated system of canals and sinuses, resulting in a spongiform appearance. Their nuclei are all transcriptionally active and show accretion of genetic material. Multinucleation and accumulation of the genetic material in the giant hemocytes represents a two-stage amplification of the genome, while their spongy ultrastructure substantially increases the contact surface with the extracellular space. These features may furnish the giant hemocytes with a considerable metabolic advantage, hence contributing to the mechanism of the effective immune response.


Assuntos
Drosophilidae/imunologia , Genoma de Inseto , Células Gigantes/imunologia , Hemócitos/imunologia , Imunidade Celular , Animais , Drosophilidae/genética
13.
Cells ; 8(8)2019 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-31344970

RESUMO

Endocytosis and autophagy are evolutionarily conserved degradative processes in all eukaryotes. Both pathways converge to the lysosome where cargo is degraded. Improper lysosomal degradation is observed in many human pathologies, so its regulatory mechanisms are important to understand. Sec20/BNIP1 (BCL2/adenovirus E1B 19 kDa protein-interacting protein 1) is a BH3 (Bcl-2 homology 3) domain-containing SNARE (soluble N-ethylmaleimide-sensitive factor-attachment protein receptors) protein that has been suggested to promote Golgi-ER retrograde transport, mitochondrial fission, apoptosis and mitophagy in yeast and vertebrates. Here, we show that loss of Sec20 in Drosophila fat cells causes the accumulation of autophagic vesicles and prevents proper lysosomal acidification and degradation during bulk, starvation-induced autophagy. Furthermore, Sec20 knockdown leads to the enlargement of late endosomes and accumulation of defective endolysosomes in larval Drosophila nephrocytes. Importantly, the loss of Syx18 (Syntaxin 18), one of the known partners of Sec20, led to similar changes in nephrocytes and fat cells. Interestingly. Sec20 appears to function independent of its role in Golgi-ER retrograde transport in regulating lysosomal degradation, as the loss of its other partner SNAREs Use1 (Unconventional SNARE In The ER 1) and Sec22 or tethering factor Zw10 (Zeste white 10), which function together in the Golgi-ER pathway, does not cause defects in autophagy or endocytosis. Thus, our data identify a potential new transport route specific to lysosome biogenesis and function.


Assuntos
Autofagia/genética , Proteínas de Drosophila/genética , Endocitose/genética , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Transporte Vesicular/metabolismo , Adipócitos/metabolismo , Adipócitos/ultraestrutura , Animais , Transporte Biológico , Drosophila , Proteínas de Drosophila/metabolismo , Imunofluorescência , Expressão Gênica , Inativação Gênica , Lisossomos/metabolismo , Lisossomos/ultraestrutura , Glicoproteínas de Membrana/metabolismo , Proteólise
14.
J Genet Genomics ; 46(4): 157-169, 2019 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-31080044

RESUMO

Autophagy is a lysosome-dependent intracellular degradation pathway that has been implicated in the pathogenesis of various human diseases, either positively or negatively impacting disease outcomes depending on the specific context. The majority of medical conditions including cancer, neurodegenerative diseases, infections and immune system disorders and inflammatory bowel disease could probably benefit from therapeutic modulation of the autophagy machinery. Drosophila represents an excellent model animal to study disease mechanisms thanks to its sophisticated genetic toolkit, and the conservation of human disease genes and autophagic processes. Here, we provide an overview of the various autophagy pathways observed both in flies and human cells (macroautophagy, microautophagy and chaperone-mediated autophagy), and discuss Drosophila models of the above-mentioned diseases where fly research has already helped to understand how defects in autophagy genes and pathways contribute to the relevant pathomechanisms.


Assuntos
Autofagia , Modelos Animais de Doenças , Doença , Drosophila melanogaster , Animais , Progressão da Doença , Humanos , Neurônios/patologia
15.
Front Immunol ; 9: 1661, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30135684

RESUMO

Preeclampsia is a disease of the mother, fetus, and placenta, and the gaps in our understanding of the complex interactions among their respective disease pathways preclude successful treatment and prevention. The placenta has a key role in the pathogenesis of the terminal pathway characterized by exaggerated maternal systemic inflammation, generalized endothelial damage, hypertension, and proteinuria. This sine qua non of preeclampsia may be triggered by distinct underlying mechanisms that occur at early stages of pregnancy and induce different phenotypes. To gain insights into these molecular pathways, we employed a systems biology approach and integrated different "omics," clinical, placental, and functional data from patients with distinct phenotypes of preeclampsia. First trimester maternal blood proteomics uncovered an altered abundance of proteins of the renin-angiotensin and immune systems, complement, and coagulation cascades in patients with term or preterm preeclampsia. Moreover, first trimester maternal blood from preterm preeclamptic patients in vitro dysregulated trophoblastic gene expression. Placental transcriptomics of women with preterm preeclampsia identified distinct gene modules associated with maternal or fetal disease. Placental "virtual" liquid biopsy showed that the dysregulation of these disease gene modules originates during the first trimester. In vitro experiments on hub transcription factors of these gene modules demonstrated that DNA hypermethylation in the regulatory region of ZNF554 leads to gene down-regulation and impaired trophoblast invasion, while BCL6 and ARNT2 up-regulation sensitizes the trophoblast to ischemia, hallmarks of preterm preeclampsia. In summary, our data suggest that there are distinct maternal and placental disease pathways, and their interaction influences the clinical presentation of preeclampsia. The activation of maternal disease pathways can be detected in all phenotypes of preeclampsia earlier and upstream of placental dysfunction, not only downstream as described before, and distinct placental disease pathways are superimposed on these maternal pathways. This is a paradigm shift, which, in agreement with epidemiological studies, warrants for the central pathologic role of preexisting maternal diseases or perturbed maternal-fetal-placental immune interactions in preeclampsia. The description of these novel pathways in the "molecular phase" of preeclampsia and the identification of their hub molecules may enable timely molecular characterization of patients with distinct preeclampsia phenotypes.


Assuntos
Doenças Placentárias , Pré-Eclâmpsia , Adulto , Biomarcadores/sangue , Feminino , Humanos , Doenças Placentárias/sangue , Doenças Placentárias/genética , Doenças Placentárias/fisiopatologia , Pré-Eclâmpsia/sangue , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/fisiopatologia , Gravidez , Proteômica , Biologia de Sistemas , Trofoblastos/metabolismo , Trofoblastos/patologia
16.
Mol Biol Cell ; 28(22): 3070-3081, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28904211

RESUMO

Autophagy is an evolutionary conserved process by which eukaryotic cells undergo self-digestion of cytoplasmic components. Here we report that a novel Drosophila immunophilin, which we have named Zonda, is critically required for starvation-induced autophagy. We show that Zonda operates at early stages of the process, specifically for Vps34-mediated phosphatidylinositol 3-phosphate (PI3P) deposition. Zonda displays an even distribution under basal conditions and, soon after starvation, nucleates in endoplasmic reticulum-associated foci that colocalize with omegasome markers. Zonda nucleation depends on Atg1, Atg13, and Atg17 but does not require Vps34, Vps15, Atg6, or Atg14. Zonda interacts physically with Atg1 through its kinase domain, as well as with Atg6 and Vps34. We propose that Zonda is an early component of the autophagy cascade necessary for Vps34-dependent PI3P deposition and omegasome formation.


Assuntos
Autofagia/fisiologia , Classe III de Fosfatidilinositol 3-Quinases/metabolismo , Imunofilinas/metabolismo , Animais , Proteínas Relacionadas à Autofagia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Imunofilinas/genética , Fagossomos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Transdução de Sinais
17.
J Cell Biol ; 216(7): 1937-1947, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28483915

RESUMO

Rab7 promotes fusion of autophagosomes and late endosomes with lysosomes in yeast and metazoan cells, acting together with its effector, the tethering complex HOPS. Here we show that another small GTPase, Rab2, is also required for autophagosome and endosome maturation and proper lysosome function in Drosophila melanogaster We demonstrate that Rab2 binds to HOPS, and that its active, GTP-locked form associates with autolysosomes. Importantly, expression of active Rab2 promotes autolysosomal fusions unlike that of GTP-locked Rab7, suggesting that its amount is normally rate limiting. We also demonstrate that RAB2A is required for autophagosome clearance in human breast cancer cells. In conclusion, we identify Rab2 as a key factor for autophagic and endocytic cargo delivery to and degradation in lysosomes.


Assuntos
Autofagossomos/enzimologia , Autofagia , Neoplasias da Mama/enzimologia , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Endocitose , Endossomos/enzimologia , Lisossomos/enzimologia , Proteína rab2 de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Humanos , Fusão de Membrana , Proteólise , Interferência de RNA , Transdução de Sinais , Transfecção , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteína rab2 de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
18.
Nature ; 541(7637): 417-420, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077876

RESUMO

As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.


Assuntos
Autofagia , Drosophila melanogaster/citologia , Modelos Biológicos , Neoplasias/patologia , Microambiente Tumoral , Aminoácidos/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Transporte Biológico , Proliferação de Células , Modelos Animais de Doenças , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/metabolismo , Feminino , Interleucina-6/metabolismo , Proteínas de Membrana , Invasividade Neoplásica , Neoplasias/genética , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
19.
Mol Neurobiol ; 54(3): 2060-2078, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-26910821

RESUMO

Alzheimer's disease (AD) is a multifactorial disease of wide clinical heterogenity. Overproduction of amyloid precursor protein (APP) and accumulation of ß-amyloid (Aß) and tau proteins are important hallmarks of AD. The identification of early pathomechanisms of AD is critically important for discovery of early diagnosis markers. Decreased brain metabolism is one of the earliest clinical symptoms of AD that indicate mitochondrial dysfunction in the brain. We performed the first comprehensive study integrating synaptic and non-synaptic mitochondrial proteome analysis (two-dimensional differential gel electrophoresis (2D-DIGE) and mass spectrometry) in correlation with Aß progression in APP/PS1 mice (3, 6, and 9 months of age). We identified changes of 60 mitochondrial proteins that reflect the progressive effect of APP overproduction and Aß accumulation on mitochondrial processes. Most of the significantly affected proteins play role in the mitochondrial electron transport chain, citric acid cycle, oxidative stress, or apoptosis. Altered expression levels of Htra2 and Ethe1, which showed parallel changes in different age groups, were confirmed also by Western blot. The common regulator bioinformatical analysis suggests the regulatory role of tumor necrosis factor (TNF) in Aß-mediated mitochondrial protein changes. Our results are in accordance with the previous postmortem human brain proteomic studies in AD in the case of many proteins. Our results could open a new path of research aiming early mitochondrial molecular mechanisms of Aß accumulation as a prodromal stage of human AD.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Mitocôndrias/metabolismo , Proteoma/metabolismo , Peptídeos beta-Amiloides/genética , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/genética , Proteoma/genética
20.
PLoS One ; 11(8): e0161289, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27529784

RESUMO

Mitochondria are essential organelles of developing spermatids in Drosophila, which undergo dramatic changes in size and shape after meiotic division, where mitochondria localized in the cytoplasm, migrate near the nucleus, aggregate, fuse and create the Nebenkern. During spermatid elongation the two similar mitochondrial derivatives of the Nebenkern start to elongate parallel to the axoneme. One of the elongated mitochondrial derivatives starts to lose volume and becomes the minor mitochondrial derivative, while the other one accumulates paracrystalline and becomes the major mitochondrial derivative. Proteins and intracellular environment that are responsible for cyst elongation and paracrystalline formation in the major mitochondrial derivative need to be identified. In this work we investigate the function of the testis specific big bubble 8 (bb8) gene during spermatogenesis. We show that a Minos element insertion in bb8 gene, a predicted glutamate dehydrogenase, causes recessive male sterility. We demonstrate bb8 mRNA enrichment in spermatids and the mitochondrial localisation of Bb8 protein during spermatogenesis. We report that megamitochondria develop in the homozygous mutant testes, in elongating spermatids. Ultrastructural analysis of the cross section of elongated spermatids shows enlarged mitochondria and the production of paracrystalline in both major and minor mitochondrial derivatives. Our results suggest that the Bb8 protein and presumably glutamate metabolism has a crucial role in the normal development and establishment of the identity of the mitochondrial derivatives during spermatid elongation.


Assuntos
Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Espermátides/citologia , Testículo/enzimologia , Animais , Elementos de DNA Transponíveis/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Infertilidade Masculina/genética , Masculino , Mutação , Especificidade de Órgãos , Espermátides/crescimento & desenvolvimento , Espermatogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA