Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biotechnol ; 392: 161-179, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009231

RESUMO

The human microbiome is a diverse ecosystem of microorganisms that reside in the body and influence various aspects of health and well-being. Recent advances in sequencing technology have brought to light microbial communities in organs and tissues that were previously considered sterile. The gut microbiota plays an important role in host physiology, including metabolic functions and immune modulation. Disruptions in the balance of the microbiome, known as dysbiosis, have been linked to diseases such as cancer, inflammatory bowel disease and metabolic disorders. In addition, the administration of antibiotics can lead to dysbiosis by disrupting the structure and function of the gut microbial community. Targeting strategies are the key to rebalancing the microbiome and fighting disease, including cancer, through interventions such as probiotics, fecal microbiota transplantation (FMT), and bacteria-based therapies. Future research must focus on understanding the complex interactions between diet, the microbiome and cancer in order to optimize personalized interventions. Multidisciplinary collaborations are essential if we are going to translate microbiome research into clinical practice. This will revolutionize approaches to cancer prevention and treatment.

2.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33431668

RESUMO

Homologous recombination (HR) is an important DNA double-strand break (DSB) repair pathway that copies sequence information lost at the break site from an undamaged homologous template. This involves the formation of a recombination structure that is processed to restore the original sequence but also harbors the potential for crossover (CO) formation between the participating molecules. Synthesis-dependent strand annealing (SDSA) is an HR subpathway that prevents CO formation and is thought to predominate in mammalian cells. The chromatin remodeler ATRX promotes an alternative HR subpathway that has the potential to form COs. Here, we show that ATRX-dependent HR outcompetes RECQ5-dependent SDSA for the repair of most two-ended DSBs in human cells and leads to the frequent formation of COs, assessed by measuring sister chromatid exchanges (SCEs). We provide evidence that subpathway choice is dependent on interaction of both ATRX and RECQ5 with proliferating cell nuclear antigen. We also show that the subpathway usage varies among different cancer cell lines and compare it to untransformed cells. We further observe HR intermediates arising as ionizing radiation (IR)-induced ultra-fine bridges only in cells expressing ATRX and lacking MUS81 and GEN1. Consistently, damage-induced MUS81 recruitment is only observed in ATRX-expressing cells. Cells lacking BLM show similar MUS81 recruitment and IR-induced SCE formation as control cells. Collectively, these results suggest that the ATRX pathway involves the formation of HR intermediates whose processing is entirely dependent on MUS81 and GEN1 and independent of BLM. We propose that the predominant ATRX-dependent HR subpathway forms joint molecules distinct from classical Holliday junctions.


Assuntos
Proteínas de Ligação a DNA/genética , Endonucleases/genética , Recombinação Homóloga/genética , RecQ Helicases/genética , Proteína Nuclear Ligada ao X/genética , Proliferação de Células/genética , Montagem e Desmontagem da Cromatina/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , Resolvases de Junção Holliday/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Radiação Ionizante , Transdução de Sinais/genética
3.
Sci Adv ; 6(51)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33355125

RESUMO

Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the treatment of BRCA-deficient cancers, with treatments currently extending toward other homologous recombination defective tumors. In a genome-wide CRISPR knockout screen with olaparib, we identify ALC1 (Amplified in Liver Cancer 1)-a cancer-relevant poly(ADP-ribose)-regulated chromatin remodeling enzyme-as a key modulator of sensitivity to PARP inhibitor. We found that ALC1 can remove inactive PARP1 indirectly through binding to PARylated chromatin. Consequently, ALC1 deficiency enhances trapping of inhibited PARP1, which then impairs the binding of both nonhomologous end-joining and homologous recombination repair factors to DNA lesions. We also establish that ALC1 overexpression, a common feature in multiple tumor types, reduces the sensitivity of BRCA-deficient cells to PARP inhibitors. Together, we conclude that ALC1-dependent PARP1 mobilization is a key step underlying PARP inhibitor resistance.


Assuntos
Cromatina , DNA Helicases , Proteínas de Ligação a DNA , Inibidores de Poli(ADP-Ribose) Polimerases , Linhagem Celular Tumoral , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo
4.
Nucleic Acids Res ; 47(21): 11250-11267, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31566235

RESUMO

The addition of poly(ADP-ribose) (PAR) chains along the chromatin fiber due to PARP1 activity regulates the recruitment of multiple factors to sites of DNA damage. In this manuscript, we investigated how, besides direct binding to PAR, early chromatin unfolding events controlled by PAR signaling contribute to recruitment to DNA lesions. We observed that different DNA-binding, but not histone-binding, domains accumulate at damaged chromatin in a PAR-dependent manner, and that this recruitment correlates with their affinity for DNA. Our findings indicate that this recruitment is promoted by early PAR-dependent chromatin remodeling rather than direct interaction with PAR. Moreover, recruitment is not the consequence of reduced molecular crowding at unfolded damaged chromatin but instead originates from facilitated binding to more exposed DNA. These findings are further substantiated by the observation that PAR-dependent chromatin remodeling at DNA lesions underlies increased DNAse hypersensitivity. Finally, the relevance of this new mode of PAR-dependent recruitment to DNA lesions is demonstrated by the observation that reducing the affinity for DNA of both CHD4 and HP1α, two proteins shown to be involved in the DNA-damage response, strongly impairs their recruitment to DNA lesions.


Assuntos
Montagem e Desmontagem da Cromatina/fisiologia , Cromatina/metabolismo , Dano ao DNA/genética , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Poli Adenosina Difosfato Ribose/fisiologia , Sítios de Ligação/genética , Células Cultivadas , Cromatina/química , Homólogo 5 da Proteína Cromobox , Humanos , Conformação de Ácido Nucleico , Poli Adenosina Difosfato Ribose/metabolismo , Ligação Proteica
5.
Mol Cell Oncol ; 5(5): e1511210, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30263950

RESUMO

Chromatin remodeling is critical for the regulation of the DNA damage response. We highlight findings from our recent study showing that the deposition of the histone variant H3.3 by the alpha-thalassemia mental retardation X-linked protein (ATRX) and the death domain associated protein (DAXX) chromatin remodeling complex regulates DNA repair synthesis during homologous recombination.

6.
Mol Cell ; 71(1): 11-24.e7, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29937341

RESUMO

ATRX is a chromatin remodeler that, together with its chaperone DAXX, deposits the histone variant H3.3 in pericentromeric and telomeric regions. Notably, ATRX is frequently mutated in tumors that maintain telomere length by a specific form of homologous recombination (HR). Surprisingly, in this context, we demonstrate that ATRX-deficient cells exhibit a defect in repairing exogenously induced DNA double-strand breaks (DSBs) by HR. ATRX operates downstream of the Rad51 removal step and interacts with PCNA and RFC-1, which are collectively required for DNA repair synthesis during HR. ATRX depletion abolishes DNA repair synthesis and prevents the formation of sister chromatid exchanges at exogenously induced DSBs. DAXX- and H3.3-depleted cells exhibit identical HR defects as ATRX-depleted cells, and both ATRX and DAXX function to deposit H3.3 during DNA repair synthesis. This suggests that ATRX facilitates the chromatin reconstitution required for extended DNA repair synthesis and sister chromatid exchange during HR.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de DNA por Recombinação , Troca de Cromátide Irmã , Proteína Nuclear Ligada ao X/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Correpressoras , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Proteína Nuclear Ligada ao X/genética
7.
Mol Cell ; 65(4): 671-684.e5, 2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28132842

RESUMO

Canonical non-homologous end joining (c-NHEJ) repairs DNA double-strand breaks (DSBs) in G1 cells with biphasic kinetics. We show that DSBs repaired with slow kinetics, including those localizing to heterochromatic regions or harboring additional lesions at the DSB site, undergo resection prior to repair by c-NHEJ and not alt-NHEJ. Resection-dependent c-NHEJ represents an inducible process during which Plk3 phosphorylates CtIP, mediating its interaction with Brca1 and promoting the initiation of resection. Mre11 exonuclease, EXD2, and Exo1 execute resection, and Artemis endonuclease functions to complete the process. If resection does not commence, then repair can ensue by c-NHEJ, but when executed, Artemis is essential to complete resection-dependent c-NHEJ. Additionally, Mre11 endonuclease activity is dispensable for resection in G1. Thus, resection in G1 differs from the process in G2 that leads to homologous recombination. Resection-dependent c-NHEJ significantly contributes to the formation of deletions and translocations in G1, which represent important initiating events in carcinogenesis.


Assuntos
Núcleo Celular/efeitos da radiação , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/efeitos da radiação , Fase G1/efeitos da radiação , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/patologia , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Endonucleases , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fase G2 , Deleção de Genes , Células HeLa , Humanos , Cinética , Proteína Homóloga a MRE11 , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Transfecção , Translocação Genética , Proteínas Supressoras de Tumor , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo
8.
DNA Repair (Amst) ; 49: 33-42, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27838458

RESUMO

Inappropriate repair of UV-induced DNA damage results in human diseases such as Xeroderma pigmentosum (XP), which is associated with an extremely high risk of skin cancer. A variant form of XP is caused by the absence of Polη, which is normally able to bypass UV-induced DNA lesions in an error-free manner. However, Polη is highly error prone when replicating undamaged DNA and, thus, the regulation of the proper targeting of Polη is crucial for the prevention of mutagenesis and UV-induced cancer formation. Spartan is a novel regulator of the damage tolerance pathway, and its association with Ub-PCNA has a role in Polη targeting; however, our knowledge about its function is only rudimentary. Here, we describe a new biochemical property of purified human SPARTAN by showing that it is a DNA-binding protein. Using a DNA binding mutant, we provide in vivo evidence that DNA binding by SPARTAN regulates the targeting of Polη to damage sites after UV exposure, and this function contributes highly to its DNA-damage tolerance function.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA/metabolismo , DNA/efeitos da radiação , Células HEK293 , Humanos , Raios Ultravioleta
9.
Nucleic Acids Res ; 44(7): 3176-89, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26792895

RESUMO

Successful and accurate completion of the replication of damage-containing DNA requires mainly recombination and RAD18-dependent DNA damage tolerance pathways. RAD18 governs at least two distinct mechanisms: translesion synthesis (TLS) and template switching (TS)-dependent pathways. Whereas TS is mainly error-free, TLS can work in an error-prone manner and, as such, the regulation of these pathways requires tight control to prevent DNA errors and potentially oncogenic transformation and tumorigenesis. In humans, the PCNA-associated recombination inhibitor (PARI) protein has recently been shown to inhibit homologous recombination (HR) events. Here, we describe a biochemical mechanism in which PARI functions as an HR regulator after replication fork stalling and during double-strand break repair. In our reconstituted biochemical system, we show that PARI inhibits DNA repair synthesis during recombination events in a PCNA interaction-dependent way but independently of its UvrD-like helicase domain. In accordance, we demonstrate that PARI inhibits HR in vivo, and its knockdown suppresses the UV sensitivity of RAD18-depleted cells. Our data reveal a novel human regulatory mechanism that limits the extent of HR and represents a new potential target for anticancer therapy.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Reparo de DNA por Recombinação , Motivos de Aminoácidos , DNA/biossíntese , DNA Polimerase III/antagonistas & inibidores , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Células HEK293 , Humanos , Ubiquitina-Proteína Ligases/fisiologia , Raios Ultravioleta
10.
Nucleic Acids Res ; 43(21): 10277-91, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26350214

RESUMO

Defects in the ability to respond properly to an unrepaired DNA lesion blocking replication promote genomic instability and cancer. Human HLTF, implicated in error-free replication of damaged DNA and tumour suppression, exhibits a HIRAN domain, a RING domain, and a SWI/SNF domain facilitating DNA-binding, PCNA-polyubiquitin-ligase, and dsDNA-translocase activities, respectively. Here, we investigate the mechanism of HLTF action with emphasis on its HIRAN domain. We found that in cells HLTF promotes the filling-in of gaps left opposite damaged DNA during replication, and this postreplication repair function depends on its HIRAN domain. Our biochemical assays show that HIRAN domain mutant HLTF proteins retain their ubiquitin ligase, ATPase and dsDNA translocase activities but are impaired in binding to a model replication fork. These data and our structural study indicate that the HIRAN domain recruits HLTF to a stalled replication fork, and it also provides the direction for the movement of the dsDNA translocase motor domain for fork reversal. In more general terms, we suggest functional similarities between the HIRAN, the OB, the HARP2, and other domains found in certain motor proteins, which may explain why only a subset of DNA translocases can carry out fork reversal.


Assuntos
Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Linhagem Celular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
11.
DNA Repair (Amst) ; 12(9): 691-8, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23731732

RESUMO

Homologous recombination (HR) is essential for maintaining genomic integrity, which is challenged by a wide variety of potentially lethal DNA lesions. Regardless of the damage type, recombination is known to proceed by RAD51-mediated D-loop formation, followed by DNA repair synthesis. Nevertheless, the participating polymerases and extension mechanism are not well characterized. Here, we present a reconstitution of this step using purified human proteins. In addition to Pol δ, TLS polymerases, including Pol η and Pol κ, also can extend D-loops. In vivo characterization reveals that Pol η and Pol κ are involved in redundant pathways for HR. In addition, the presence of PCNA on the D-loop regulates the length of the extension tracks by recruiting various polymerases and might present a regulatory point for the various recombination outcomes.


Assuntos
DNA Polimerase Dirigida por DNA/química , Recombinação Homóloga , Antígeno Nuclear de Célula em Proliferação/química , Dano ao DNA , DNA Polimerase III/química , DNA Polimerase III/fisiologia , Replicação do DNA , DNA de Cadeia Simples/biossíntese , DNA Polimerase Dirigida por DNA/fisiologia , Células HeLa , Humanos , Concentração Osmolar , Antígeno Nuclear de Célula em Proliferação/fisiologia , Proteína FUS de Ligação a RNA/química , Proteína FUS de Ligação a RNA/fisiologia , Rad51 Recombinase/química , DNA Polimerase iota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA