Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Sci ; 32(11): e4791, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37801623

RESUMO

Caveolin-1 is an integral membrane protein that is known to acquire a number of posttranslational modifications upon trafficking to the plasma membrane. In particular, caveolin-1 is palmitoylated at three cysteine residues (C133, C143, and C156) located within the C-terminal domain of the protein which could have structural and topological implications. Herein, a reliable preparation of full-length S-alkylated caveolin-1, which closely mimics the palmitoylation observed in vivo, is described. HPLC and ESI-LC-MS analyses verified the addition of the C16 alkyl groups to caveolin-1 constructs containing one (C133), two (C133 and C143), and three (C133, C143, and C156) cysteine residues. Circular dichroism spectroscopy analysis of the constructs revealed that S-alkylation does not significantly affect the global helicity of the protein; however, molecular dynamics simulations revealed that there were local regions where the helicity was altered positively or negatively by S-alkylation. In addition, the simulations showed that lipidation tames the topological promiscuity of the C-terminal domain, resulting in a disposition within the bilayer characterized by increased depth.


Assuntos
Caveolina 1 , Cisteína , Caveolina 1/genética , Caveolina 1/química , Caveolina 1/metabolismo , Cisteína/metabolismo , Proteínas de Membrana/química , Membrana Celular/metabolismo , Alquilação
2.
Proteins ; 90(2): 560-565, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34596903

RESUMO

Oleosin is a hydrophobic protein that punctuates the surface of plant seed lipid droplets, which are 20 nm-100 µm entities that serve as reservoirs for high-energy metabolites. Oleosin is purported to stabilize lipid droplets, but its exact mechanism of stabilization has not been established. Probing the structure of oleosin directly in lipid droplets is challenging due to the size of lipid droplets and their high degree of light scattering. Therefore, a medium in which the native structure of oleosin is retained, but is also amenable to spectroscopic studies is needed. Here, we show, using a suite of biophysical techniques, that dodecylphosphocholine micelles appear to support the tertiary structure of the oleosin protein (i.e., hairpin conformation) and render the protein in an oligomeric state that is amenable to more sophisticated biophysical techniques such as NMR.


Assuntos
Gotículas Lipídicas/química , Micelas , Fosforilcolina/análogos & derivados , Proteínas de Plantas/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Fosforilcolina/química
3.
Biochim Biophys Acta Biomembr ; 1863(8): 183624, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933429

RESUMO

Lipid droplets also known as oil bodies are found in a variety of organisms and function as stores of high-energy metabolites. Recently, there has been interest in using lipid droplets for protein production and drug delivery. Artificial lipid droplets have been previously prepared, but their short lifetime in solution and inhomogeneity has severely limited their applicability. Herein we report an improved methodology for the production of synthetic lipid droplets that overcomes the aforementioned limitations. These advancements include: 1) development of a methodology for the expression and purification of high-levels of oleosin, a crucial lipid droplet component, 2) preparation of neutrally-buoyant synthetic lipid droplets, and 3) production of synthetic lipid droplets of a specific size. Together, these important enhancements will facilitate the advancement of lipid droplet science and its application in biotechnology.


Assuntos
Sistemas de Liberação de Medicamentos , Helianthus/química , Gotículas Lipídicas/química , Proteínas de Plantas/genética , Metabolismo Energético , Gotículas Lipídicas/metabolismo , Proteínas de Plantas/síntese química , Biossíntese de Proteínas/genética
4.
Biochem Soc Trans ; 47(5): 1489-1498, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31551358

RESUMO

Caveolae are 50-100 nm invaginations found within the plasma membrane of cells. Caveolae are involved in many processes that are essential for homeostasis, most notably endocytosis, mechano-protection, and signal transduction. Within these invaginations, the most important proteins are caveolins, which in addition to participating in the aforementioned processes are structural proteins responsible for caveolae biogenesis. When caveolin is misregulated or mutated, many disease states can arise which include muscular dystrophy, cancers, and heart disease. Unlike most integral membrane proteins, caveolin does not have a transmembrane orientation; instead, it is postulated to adopt an unusual topography where both the N- and C-termini lie on the cytoplasmic side of the membrane, and the hydrophobic span adopts an intramembrane loop conformation. While knowledge concerning the biology of caveolin has progressed apace, fundamental structural information has proven more difficult to obtain. In this mini-review, we curate as well as critically assess the structural data that have been obtained on caveolins to date in order to build a robust and compelling model of the caveolin secondary structure.


Assuntos
Caveolinas/química , Sequência de Aminoácidos , Animais , Humanos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA