Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur J Med Chem ; 260: 115720, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37633203

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) has been targeted for the development of anti-SARS-CoV-2 agents against COVID-19 infection because Mpro processes essential viral polyproteins and plays a key role in SARS-CoV-2 replication. In this study, we report the development of novel SARS-CoV-2 Mpro inhibitors derived from carmofur, a previously identified compound that has shown moderate potency as a covalent inhibitor of SARS-CoV-2 Mpro. To employ a structure-guided drug design strategy, a putative intact binding mode of carmofur at catalytic active site of Mpro was initially predicted by docking simulation. Based on the predicted binding mode, a series of carmofur derivatives aiming to occupy the Mpro substrate binding regions were investigated for structure-activity relationship analysis. As a result, an indole-based derivative, speculated to interact with the S4 binding pocket, 21b (IC50 = 1.5 ± 0.1 µM) was discovered. Its structure was further modified and evaluated in silico by combining docking simulation, free energy perturbation calculation and subpocket interaction analysis to optimize the interactions at the S2 and S4 binding pockets. Among the newly designed novel derivatives, 21h and 21i showed the best inhibitory potencies against Mpro with IC50 values of 0.35 and 0.37 µM, respectively. Moreover, their antiviral activities were confirmed with EC50 values of 20-30 µM in the SARS-CoV-2-infected cell-based assay, suggesting that these novel Mpro inhibitors could be applied as potential lead compounds for the development of substantial anti-SARS-CoV-2 agents.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Antivirais/farmacologia , Fluoruracila
2.
Nat Immunol ; 24(6): 1007-1019, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37069398

RESUMO

Adoptive transfer of genetically engineered chimeric antigen receptor (CAR) T cells is becoming a promising treatment option for hematological malignancies. However, T cell immunotherapies have mostly failed in individuals with solid tumors. Here, with a CRISPR-Cas9 pooled library, we performed an in vivo targeted loss-of-function screen and identified ST3 ß-galactoside α-2,3-sialyltransferase 1 (ST3GAL1) as a negative regulator of the cancer-specific migration of CAR T cells. Analysis of glycosylated proteins revealed that CD18 is a major effector of ST3GAL1 in activated CD8+ T cells. ST3GAL1-mediated glycosylation induces the spontaneous nonspecific tissue sequestration of T cells by altering lymphocyte function-associated antigen-1 (LFA-1) endocytic recycling. Engineered CAR T cells with enhanced expression of ßII-spectrin, a central LFA-1-associated cytoskeleton molecule, reversed ST3GAL1-mediated nonspecific T cell migration and reduced tumor growth in mice by improving tumor-specific homing of CAR T cells. These findings identify the ST3GAL1-ßII-spectrin axis as a major cell-intrinsic program for cancer-targeting CAR T cell migration and as a promising strategy for effective T cell immunotherapy.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Movimento Celular , Imunoterapia Adotiva , Antígeno-1 Associado à Função Linfocitária , Espectrina , Humanos , Feminino
3.
Nucleic Acids Res ; 49(10): 5760-5778, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34037780

RESUMO

Alternative pre-mRNA splicing is a critical step to generate multiple transcripts, thereby dramatically enlarging the proteomic diversity. Thus, a common feature of most alternative splicing factor knockout models is lethality. However, little is known about lineage-specific alternative splicing regulators in a physiological setting. Here, we report that NSrp70 is selectively expressed in developing thymocytes, highest at the double-positive (DP) stage. Global splicing and transcriptional profiling revealed that NSrp70 regulates the cell cycle and survival of thymocytes by controlling the alternative processing of various RNA splicing factors, including the oncogenic splicing factor SRSF1. A conditional-knockout of Nsrp1 (NSrp70-cKO) using CD4Cre developed severe defects in T cell maturation to single-positive thymocytes, due to insufficient T cell receptor (TCR) signaling and uncontrolled cell growth and death. Mice displayed severe peripheral lymphopenia and could not optimally control tumor growth. This study establishes a model to address the function of lymphoid-lineage-specific alternative splicing factor NSrp70 in a thymic T cell developmental pathway.


Assuntos
Processamento Alternativo/genética , Carcinogênese/metabolismo , Desenvolvimento Embrionário/genética , Hematopoese/genética , Melanoma/metabolismo , Timócitos/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Apoptose/genética , Carcinogênese/genética , Proliferação de Células/genética , Genômica , Células HEK293 , Humanos , Lectinas Tipo C/metabolismo , Linfopenia/genética , Linfopenia/metabolismo , Melanoma/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reação em Cadeia da Polimerase , RNA-Seq , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de Serina-Arginina/metabolismo , Timo/embriologia , Timo/metabolismo
4.
Front Cell Dev Biol ; 9: 606149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33898417

RESUMO

Transgelin-2, a small actin-binding protein, is the only transgelin family member expressed in immune cells. In T and B lymphocytes, transgelin-2 is constitutively expressed, but in antigen-presenting cells, it is significantly upregulated upon lipopolysaccharide stimulation. Transgelin-2 acts as a molecular staple to stabilize the actin cytoskeleton, and it competes with cofilin to bind filamentous (F)-actin. This action may enable immune synapse stabilization during T-cell interaction with cognate antigen-presenting cells. Furthermore, transgelin-2 blocks Arp2/3 complex-nucleated actin branching, which is presumably related to small filopodia formation, enhanced phagocytic function, and antigen presentation. Overall, transgelin-2 is an essential part of the molecular armament required for host defense against neoplasms and infectious diseases. However, transgelin-2 acts as a double-edged sword, as its expression is also essential for a wide range of tumor development, including drug resistance and metastasis. Thus, targeting transgelin-2 can also have a therapeutic advantage for cancer treatment; selectively suppressing transgelin-2 expression may prevent multidrug resistance in cancer chemotherapy. Here, we review newly discovered molecular characteristics of transgelin-2 and discuss clinical applications for cancer and immunotherapy.

5.
J Hematol Oncol ; 14(1): 43, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33731208

RESUMO

BACKGROUND: Transgelin-2 is a 22 kDa actin-binding protein that has been proposed to act as an oncogenic factor, capable of contributing to tumorigenesis in a wide range of human malignancies. However, little is known whether this tiny protein also plays an important role in immunity, thereby keeping body from the cancer development and metastasis. Here, we investigated the functions of transgelin-2 in dendritic cell (DC) immunity. Further, we investigated whether the non-viral transduction of cell-permeable transgelin-2 peptide potentially enhance DC-based cancer immunotherapy. METHODS: To understand the functions of transgelin-2 in DCs, we utilized bone marrow-derived DCs (BMDCs) purified from transgelin-2 knockout (Tagln2-/-) mice. To observe the dynamic cellular mechanism of transgelin-2, we utilized confocal microscopy and flow cytometry. To monitor DC migration and cognate T-DC interaction in vivo, we used intravital two-photon microscopy. For the solid and metastasis tumor models, OVA+ B16F10 melanoma were inoculated into the C57BL/6 mice via intravenously (i.v.) and subcutaneously (s.c.), respectively. OTI TCR T cells were used for the adoptive transfer experiments. Cell-permeable, de-ubiquitinated recombinant transgelin-2 was purified from Escherichia coli and applied for DC-based adoptive immunotherapy. RESULTS: We found that transgelin-2 is remarkably expressed in BMDCs during maturation and lipopolysaccharide activation, suggesting that this protein plays a role in DC-based immunity. Although Tagln2-/- BMDCs exhibited no changes in maturation, they showed significant defects in their abilities to home to draining lymph nodes (LNs) and prime T cells to produce antigen-specific T cell clones, and these changes were associated with a failure to suppress tumor growth and metastasis of OVA+ B16F10 melanoma cells in mice. Tagln2-/- BMDCs had defects in filopodia-like membrane protrusion and podosome formation due to the attenuation of the signals that modulate actin remodeling in vitro and formed short, unstable contacts with cognate CD4+ T cells in vivo. Strikingly, non-viral transduction of cell-permeable, de-ubiquitinated recombinant transgelin-2 potentiated DC functions to suppress tumor growth and metastasis. CONCLUSION: This work demonstrates that transgelin-2 is an essential protein for both cancer and immunity. Therefore, transgelin-2 can act as a double-edged sword depending on how we apply this protein to cancer therapy. Engineering and clinical application of this protein may unveil a new era in DC-based cancer immunotherapy. Our findings indicate that cell-permeable transgelin-2 have a potential clinical value as a cancer immunotherapy based on DCs.


Assuntos
Transferência Adotiva , Células Dendríticas/imunologia , Melanoma Experimental/terapia , Proteínas dos Microfilamentos/imunologia , Proteínas Musculares/imunologia , Animais , Movimento Celular , Células Cultivadas , Células Dendríticas/citologia , Feminino , Imunidade , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas Musculares/genética
6.
Front Cell Dev Biol ; 8: 342, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32478077

RESUMO

The calponin homology (CH) domain is one of the most common modules in various actin-binding proteins and is characterized by an α-helical fold. The CH domain plays important regulatory roles in both cytoskeletal dynamics and signaling. The CH domain is required for stability and organization of the actin cytoskeleton, calcium mobilization and activation of downstream pathways. The CH domain has recently garnered increased attention due to its importance in the onset of different diseases, such as cancers and asthma. However, many roles of the CH domain in various protein functions and corresponding diseases are still unclear. Here, we review current knowledge about the structural features, interactome and related diseases of the CH domain.

7.
Front Immunol ; 11: 591054, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597944

RESUMO

A robust T-cell response is an important component of sustained antitumor immunity. In this respect, the avidity of TCR in the antigen-targeting of tumors is crucial for the quality of the T-cell response. This study reports that the transmembrane (TM) domain of immunoglobulin superfamily member 4 (IGSF4) binds to the TM of the CD3 ζ-chain through an interaction between His177 and Asp36, which results in IGSF4-CD3 ζ dimers. IGSF4 also forms homo-dimers through the GxxVA motif in the TM domain, thereby constituting large TCR clusters. Overexpression of IGSF4 lacking the extracellular (IG4ΔEXT) domain potentiates the OTI CD8+ T cells to release IFN-γ and TNF-α and to kill OVA+-B16F10 melanoma cells. In animal models, IG4ΔEXT significantly reduces B16F10 tumor metastasis as well as tumor growth. Collectively, the results indicate that the TM domain of IGSF4 can regulate TCR avidity, and they further demonstrate that TCR avidity regulation is critical for improving the antitumor activity of cytotoxic T cells.


Assuntos
Molécula 1 de Adesão Celular/imunologia , Imunoterapia , Melanoma Experimental/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Animais , Molécula 1 de Adesão Celular/genética , Linhagem Celular Tumoral , Humanos , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/genética
8.
JCI Insight ; 4(5)2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30843878

RESUMO

Atopic dermatitis (AD) is a complex inflammatory skin disease mediated by immune cells of both adaptive and innate types. Among them, CD4+ Th cells are one of major players of AD pathogenesis. Although the pathogenic role of Th2 cells has been well characterized, Th17/Th22 cells are also implicated in the pathogenesis of AD. However, the molecular mechanisms underlying pathogenic immune responses in AD remain unclear. We sought to investigate how the defect in the AD susceptibility gene, Ets1, is involved in AD pathogenesis in human and mice and its clinical relevance in disease severity by identifying Ets1 target genes and binding partners. Consistent with the decrease in ETS1 levels in severe AD patients and the experimental AD-like skin inflammation model, T cell-specific Ets1-deficient mice (Ets1ΔdLck) developed severe AD-like symptoms with increased pathogenic Th cell responses. A T cell-intrinsic increase of gp130 expression upon Ets1 deficiency promotes the gp130-mediated IL-6 signaling pathway, thereby leading to the development of severe AD-like symptoms. Functional blocking of gp130 by selective inhibitor SC144 ameliorated the disease pathogenesis by reducing pathogenic Th cell responses. Our results reveal a protective role of Ets1 in restricting pathogenic Th cell responses and suggest a potential therapeutic target for AD treatment.


Assuntos
Dermatite Atópica/tratamento farmacológico , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Linfócitos T CD8-Positivos/metabolismo , Receptor gp130 de Citocina/metabolismo , Dermatite Atópica/imunologia , Dermatite Atópica/patologia , Modelos Animais de Doenças , Humanos , Interleucina-6 , Camundongos , Camundongos Knockout , Proteína Proto-Oncogênica c-ets-1/genética , Pele/patologia , Células Th17/imunologia , Células Th2/imunologia
10.
Oncoimmunology ; 7(12): e1500674, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524895

RESUMO

Correct temporal and spatial control of actin dynamics is essential for the cytotoxic T cell effector function against tumor cells. However, little is known whether actin engineering in tumor-targeted T cells can enhance their antitumor responses, thereby potentiating the adoptive T cell therapy. Here, we report that TAGLN2, a 22-KDa actin-stabilizing protein which is physically associated with lymphocyte function-associated antigen-1 (LFA-1), potentiates the OTI TCR CD8+ T cells to kill the intercellular adhesion molecule-1 (ICAM-1)-positive/OVA-presenting E0771 cells, but not ICAM-1-negative OVA-B16F10 cells, suggesting an 'inside-out' activation of LFA-1, which causes more efficient immunological synapse formation between T cells and tumor cells. Notably, recombinant TAGLN2 fused with the protein transduction domain (TG2P) overcame the disadvantages of viral gene delivery, leading to a significant reduction in tumor growth in mice. TG2P also potentiated the CD19-targeted, chimeric antigen receptor (CAR)-modified T cells to kill Raji B-lymphoma cells. Our findings indicate that activating the TAGLN2-actin-LFA-1 axis is an effective strategy to potentiate the adoptive T-cell immunotherapy.

11.
Front Immunol ; 9: 1681, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116236

RESUMO

Disseminated tumor cells in the bone marrow environment are the main cause of systemic metastasis after curative treatment for major solid tumors. However, the detailed biological processes of tumor biology in bone marrow have not been well defined in a real-time manner, because of a lack of a proper in vivo experimental model thereof. In this study, we established intravital imaging models of the bone marrow environment to enable real-time observation of cancer cells in the bone marrow. Using these novel imaging models of intact bone marrow and transplanted bone marrow of mice, respectively, via two-photon microscopy, we could first successfully track and analyze both the distribution and the phenotype of cancer cells in bone marrow of live mouse. Therefore, these novel in vivo imaging models for the bone marrow would provide a valuable tool to identify the biologic processes of cancer cells in a real-time manner in a live animal model.


Assuntos
Medula Óssea/patologia , Rastreamento de Células/métodos , Neoplasias/patologia , Microambiente Tumoral , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapêutico , Citometria de Fluxo , Humanos , Tolerância Imunológica , Microscopia Intravital , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Modelos Animais , Neoplasias/tratamento farmacológico , Estatísticas não Paramétricas , Gencitabina
12.
J Leukoc Biol ; 104(5): 903-910, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29749649

RESUMO

Transgelin-2 is a small 22-kDa actin-binding protein implicated in actin dynamics, which stabilizes actin structures and participates in actin-associated signaling pathways. Much curiosity regarding transgelin-2 has centered around its dysregulation in tumor development and associated diseases. However, recent studies have shed new light on the functions of transgelin-2, the only transgelin family member present in leukocytes, in the context of various immune responses. In this review, we outlined the biochemical properties of transgelin-2 and its physiological functions in T cells, B cells, and macrophages. Transgelin-2 regulates T cell activation by stabilizing the actin cytoskeleton at the immunological synapse. Transgelin-2 in B cells also participates in the stabilization of T cell-B cell conjugates. While transgelin-2 is expressed at trace levels in macrophages, its expression is highly upregulated upon lipopolysaccharide stimulation and plays an essential role in macrophage phagocytosis. Since transgelin-2 increases T cell adhesion to target cells via boosting the "inside-out" costimulatory activation of leukocyte function-associated antigen 1, transgelin-2 could be a suitable candidate to potentiate the antitumor response of cytotoxic T cells by compensating for the lack of costimulation in tumor microenvironment. We discussed the feasibility of using native or engineered transgelin-2 as a synergistic molecule in cell-based immunotherapies, without inducing off-target disturbance in actin dynamics in other cells.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Proteínas dos Microfilamentos/imunologia , Proteínas Musculares/imunologia , Animais , Linfócitos B/imunologia , Humanos , Imunoterapia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Linfócitos T/imunologia
13.
Sci Rep ; 8(1): 5503, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615809

RESUMO

TAGLN is an actin-binding protein family that comprises three isoforms with theorized roles in smooth muscle differentiation, tumour development, lymphocyte activation, and brain chemistry. However, their fundamental characteristics in regulation of the actin-based cytoskeleton are not fully understood. Here we show that TAGLN2 (including TAGLN1 and TAGLN3) extensively nucleates G-actin polymerization under low-salt conditions, where polymerization would be completely suppressed. The calponin homology domain and actin-binding loop are essential to mechanically connect two adjacent G-actins, thereby mediating multimeric interactions. However, TAGLN2 blocked the Arp2/3 complex binding to actin filaments under physiological salt conditions, thereby inhibiting branched actin nucleation. In HeLa and T cells, TAGLN2 enhanced filopodium-like membrane protrusion. Collectively, the dual functional nature of TAGLN2-G-actin polymerization and Arp2/3 complex inhibition-may account for the mechanisms of filopodia development at the edge of Arp2/3-rich lamellipodia in various cell types.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/química , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Multimerização Proteica , Animais , Células HeLa , Humanos , Camundongos , Modelos Moleculares , Estrutura Quaternária de Proteína , Transporte Proteico , Pseudópodes/metabolismo
14.
J Cell Biochem ; 119(1): 150-156, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28590012

RESUMO

Swiprosin-1/EFhd2 is a Ca2+ binding adapter protein involved in the various cellular functions. Swiprosin-1 is significantly upregulated in a number of pathological conditions of inflammation, neurodegeneration, and cancer. Swiprosin-1 associated with actin and its expression level amplifies the production of proinflammatory mediators and modulates the activation of transcription factor during immune cells activation. This review aims at providing an overview of the expression and function of swiprosin-1/EFhd2 in various pathophysiological conditions. We also discussed the key role of swiprosin-1 in immune cell activation, cell migration, apoptosis, humoral immunity, cancer invasion and metastasis, neuronal transport, and major signaling cascades. J. Cell. Biochem. 119: 150-156, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Proteínas de Ligação ao Cálcio/fisiologia , Apoptose , Transporte Axonal , Proteínas de Ligação ao Cálcio/metabolismo , Movimento Celular , Humanos , Sistema Imunitário/imunologia , Imunidade Humoral , NF-kappa B/metabolismo , Invasividade Neoplásica , Metástase Neoplásica , Transdução de Sinais
15.
Sci Rep ; 7(1): 8731, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821818

RESUMO

Activated macrophages have a greater ability of phagocytosis against pathogens that is mediated by large-scale actin rearrangement. However, molecular machineries that conduct this task have not been fully identified. Here, we demonstrate an unanticipated role of TAGLN2, a 22-kDa actin-binding protein, in Toll-like receptor (TLR)-stimulated phagocytosis. TAGLN2 was greatly induced in macrophages in response to lipopolysaccharide (LPS), a ligand for TLR4, partly via the NF-κB pathway. TAGLN2-deficient macrophages (TAGLN2 -/-) showed defective phagocytic functions of IgM- and IgG-coated sheep red blood cells as well as bacteria. Cell signaling pathways involved in actin rearrangement-PI3 kinase/AKT and Ras-ERK-were also down-regulated in LPS-stimulated TAGLN2-deficient macrophages. Moreover, TAGLN2 -/- mice showed higher mortality after bacterial infection than wild-type littermates. Thus, our results revealed a novel function of TAGLN2 as a molecular armament required for host defense.


Assuntos
Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos Peritoneais/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/metabolismo , Fagocitose/efeitos dos fármacos , Actinas/metabolismo , Animais , Extensões da Superfície Celular/metabolismo , Suscetibilidade a Doenças , Humanos , Células Jurkat , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Proteínas dos Microfilamentos/deficiência , Proteínas Musculares/deficiência , Peritonite/microbiologia , Peritonite/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Polimerização , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Análise de Sobrevida
16.
Nat Commun ; 8: 15365, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504276

RESUMO

Adoptive cell transfer utilizing tumour-targeting cytotoxic T lymphocytes (CTLs) is one of the most effective immunotherapies against haematological malignancies, but significant clinical success has not yet been achieved in solid tumours due in part to the strong immunosuppressive tumour microenvironment. Here, we show that suppression of CTL killing by CD4+CD25+Foxp3+ regulatory T cell (Treg) is in part mediated by TGFß-induced inhibition of inositol trisphosphate (IP3) production, leading to a decrease in T cell receptor (TCR)-dependent intracellular Ca2+ response. Highly selective optical control of Ca2+ signalling in adoptively transferred CTLs enhances T cell activation and IFN-γ production in vitro, leading to a significant reduction in tumour growth in mice. Altogether, our findings indicate that the targeted optogenetic stimulation of intracellular Ca2+ signal allows for the remote control of cytotoxic effector functions of adoptively transferred T cells with outstanding spatial resolution by boosting T cell immune responses at the tumour sites.


Assuntos
Cálcio/imunologia , Neoplasias Experimentais/imunologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Microambiente Tumoral/imunologia , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imunoterapia Adotiva/métodos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/terapia , Linfócitos T Citotóxicos/metabolismo , Linfócitos T Citotóxicos/transplante , Linfócitos T Reguladores/metabolismo , Carga Tumoral/genética , Carga Tumoral/imunologia , Microambiente Tumoral/genética
17.
BMB Rep ; 48(7): 369-70, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26129675

RESUMO

Actin dynamics is critical for the formation and sustainment of the immunological synapse (IS) during T cell interaction with antigen-presenting cells (APC). Thus, many actin regulating proteins are involved in spatial and temporal actin remodeling at the IS. However, little is known whether or how actin stabilizing protein controls IS and the consequent T cell functions. TAGLN2 - an actin-binding protein predominantly expressed in T cells - displays a novel function to stabilize cortical F-actin, thereby augmenting F-actin contents at the IS, and acquiring leukocyte function-associated antigen-1 activation following T cell activation. TAGLN2 also competes with cofilin to protect F-actin in vitro and in vivo. During cytotoxic T cell interaction with cancer cells, the expression level of TAGLN2 at the IS correlates with the T cell adhesion to target cancer cells and production of lytic granules such as granzyme B and perforin, thus expressing cytotoxic T cell function. These findings identify a novel function for TAGLN2 as an actin stabilizing protein that is essential for stable immunological synapse formation, thereby regulating T cell immunity.


Assuntos
Citoesqueleto de Actina/metabolismo , Sinapses Imunológicas/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Musculares/fisiologia , Animais , Humanos
18.
Oncotarget ; 6(15): 13060-71, 2015 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-26079945

RESUMO

Ectopic expression of Swiprosin-1, an actin-binding protein (also known as EF hand domain containing 2; EFHD2), enhanced motile protrusions associated with actin, such as lamellipodia and membrane ruffles. Swiprosin-1 levels were increased in various human cancer tissues, particularly at highly invasive stages of malignant melanoma. Expression of Swiprosin-1 was correlated with that of epidermal growth factor receptor (EGFR) and induced by EGF. In a mouse metastasis model, Swiprosin-1 overexpression induced pulmonary metastasis whereas its knockdown led to marked inhibition of metastasis of highly invasive melanoma cells. Swiprosin-1 at the lamellipodia and membrane ruffles controlled the direction of cell protrusion and enhanced migration velocity through activating the Rho family of small GTPases, including Rac1, Cdc42 and RhoA. Our collective findings support the potential utility of Swiprosin-1 as a therapeutic target to prevent cancer invasion and metastasis.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Melanoma/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Melanoma/patologia , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Camundongos , Transdução de Sinais , Transfecção
19.
Leuk Res ; 38(10): 1252-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25176346

RESUMO

We investigated three splicing factor proteins (SFPs; NSRP70, SRSF1, and HNRNPA1) in 187 adults with and without acute leukemia (AL). We showed that NSRP70 is a novel lymphoblastic AL (ALL) surrogate marker, which presented excellent diagnostic accuracy (92%) and disappeared during remission. Its highest molecular weight form, but not total amount, was associated with adverse genetic abnormalities in myeloid AL (AML). Furthermore, we identified that these SFPs were more prevalent in ALL than in AML; were not correlated with their mRNA levels; and their formations in AL may occur without coding mutations and relate to post-translational modifications.


Assuntos
Biomarcadores Tumorais/análise , Proteínas Nucleares/biossíntese , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Feminino , Imunofluorescência , Humanos , Immunoblotting , Masculino , Pessoa de Meia-Idade , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Proteômica , Transcrição Gênica , Adulto Jovem
20.
J Immunol ; 193(6): 2772-83, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25114106

RESUMO

NFAT plays a crucial role in the immune system by regulating the transcription of inducible genes during immune responses. In T cells, NFAT proteins govern various cellular events related to T cell development, activation, tolerance induction, and differentiation. We previously reported the NFAT1-dependent enhancer activity of conserved noncoding sequence (CNS)-9, a distal cis-acting element, in the regulation of IL-10 transcription in T cells. In this study, we developed a T cell-based reporter system to identify compounds that modulate the regulatory activity of CNS-9. Among the identified candidates, 6-methoxyflavone (6-MF) significantly inhibited the enhancer activity of CNS-9, thereby reducing IL-10 expression in T cells without affecting cell viability. 6-MF also downregulated the transcription of NFAT1 target genes such as IL-4, IL-13, and IFN-γ. Treatment of 6-MF inhibited the translocation of NFAT1 into the nucleus, which consequently interrupted NFAT1 binding to the target loci, without affecting the expression or dephosphorylation of NFAT1. Treatment of 6-MF to CD4(+) T cells or B cells isolated from mice with atopic dermatitis significantly reduced disease-associated cytokine production, as well as the levels of IgE. In addition, oral administration of 6-MF to atopic dermatitis mice ameliorated disease symptoms by reducing serum IgE levels and infiltrating lymphocytes. Conclusively, our results suggest that 6-MF can be a potential candidate for the development of an effective immunomodulator via the suppression of NFAT-mediated T cell activation.


Assuntos
Transporte Ativo do Núcleo Celular/imunologia , Flavonas/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Fatores de Transcrição NFATC/imunologia , Animais , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Núcleo Celular , Sequência Conservada/efeitos dos fármacos , Sequência Conservada/genética , Citocinas/biossíntese , Proteínas de Ligação a DNA/genética , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/imunologia , Células HEK293 , Humanos , Imunoglobulina E/sangue , Interferon gama/biossíntese , Interferon gama/genética , Interleucina-10/biossíntese , Interleucina-10/genética , Interleucina-13/biossíntese , Interleucina-13/genética , Interleucina-4/biossíntese , Interleucina-4/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/antagonistas & inibidores , Fosforilação , Ligação Proteica/efeitos dos fármacos , RNA não Traduzido/efeitos dos fármacos , RNA não Traduzido/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA