Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(5): 533-544, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37526463

RESUMO

The activity of PP2A (protein phosphatase 2A), a serine-threonine phosphatase, is reduced by chronic cigarette smoke (SM) exposure and α-1 antitrypsin (AAT) deficiency, and chemical activation of PP2A reduces the loss of lung function in SM-exposed mice. However, the previously studied PP2A-activator tricyclic sulfonamide compound DBK-1154 has low stability to oxidative metabolism, resulting in fast clearance and low systemic exposure. Here we compare the utility of a new more stable PP2A activator, ATUX-792, versus DBK-1154 for the treatment of SM-induced emphysema. ATUX-792 was also tested in human bronchial epithelial cells and a mouse model of AAT deficiency, Serpina1a-e-knockout mice. Human bronchial epithelial cells were treated with ATUX-792 or DBK-1154, and cell viability, PP2A activity, and MAP (mitogen-activated protein) kinase phosphorylation status were examined. Wild-type mice received vehicle, DBK-1154, or ATUX-792 orally in the last 2 months of 4 months of SM exposure, and 8-month-old Serpina1a-e-knockout mice received ATUX-792 daily for 4 months. Forced oscillation and expiratory measurements and histology analysis were performed. Treatment with ATUX-792 or DBK-1154 resulted in PP2A activation, reduced MAP kinase phosphorylation, immune cell infiltration, reduced airspace enlargements, and preserved lung function. Using protein arrays and multiplex assays, PP2A activation was observed to reduce AAT-deficient and SM-induced release of CXCL5, CCL17, and CXCL16 into the airways, which coincided with reduced neutrophil lung infiltration. Our study indicates that suppression of the PP2A activity in two models of emphysema could be restored by next-generation PP2A activators to impact lung function.


Assuntos
Enfisema , Enfisema Pulmonar , Humanos , Animais , Camundongos , Lactente , Proteína Fosfatase 2/metabolismo , Enfisema Pulmonar/tratamento farmacológico , Enfisema Pulmonar/metabolismo , Pulmão/metabolismo , Enfisema/tratamento farmacológico , Enfisema/metabolismo , Camundongos Knockout
2.
Medicina (Kaunas) ; 59(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36837454

RESUMO

Hyperlipidemia is frequently reported in chronic obstructive pulmonary disease (COPD) patients and is linked to the progression of the disease and its comorbidities. Hypercholesterolemia leads to cholesterol accumulation in many cell types, especially immune cells, and some recent studies suggest that cholesterol impacts lung epithelial cells' inflammatory responses and mitochondrial responses. Several studies also indicate that targeting cholesterol responses with either statins or liver X receptor (LXR) agonists may be plausible means of improving pulmonary outcomes. Equally, cholesterol metabolism and signaling are linked to mitochondrial dysfunction and inflammation attributed to COPD progression. Here, we review the current literature focusing on the impact of cigarette smoke on cholesterol levels, cholesterol efflux, and the influence of cholesterol on immune and mitochondrial responses within the lungs.


Assuntos
Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Pulmão , Pneumonia/metabolismo , Inflamação/metabolismo , Colesterol/metabolismo , Mitocôndrias/metabolismo
3.
Sci Rep ; 12(1): 5583, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379853

RESUMO

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to COVID-19-ARDS. This secondary tissue injury arises from dysregulated neutrophils and neutrophil extracellular traps (NETs) intended to kill pathogens, but instead cause cell-injury. Insufficiency of pleiotropic therapeutic approaches delineate the need for inhibitors of dysregulated neutrophil-subset(s) that induce subset-specific apoptosis critical for neutrophil function-shutdown. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/VEGF-signal peptide receptor, DEspR, are apoptosis-resistant like DEspR+ cancer-cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID-19-ARDS. Here, we report the significant association of increased peripheral DEspR+CD11b+ neutrophil-counts with severity and mortality in ARDS and COVID-19-ARDS, and intravascular NET-formation, in contrast to DEspR[-] neutrophils. We detect DEspR+ neutrophils and monocytes in lung tissue patients in ARDS and COVID-19-ARDS, and increased neutrophil RNA-levels of DEspR ligands and modulators in COVID-19-ARDS scRNA-seq data-files. Unlike DEspR[-] neutrophils, DEspR+CD11b+ neutrophils exhibit delayed apoptosis, which is blocked by humanized anti-DEspR-IgG4S228P antibody, hu6g8, in ex vivo assays. Ex vivo live-cell imaging of Rhesus-derived DEspR+CD11b+ neutrophils showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data identify DEspR+CD11b+ neutrophils as a targetable 'rogue' neutrophil-subset associated with severity and mortality in ARDS and COVID-19-ARDS.


Assuntos
COVID-19 , Armadilhas Extracelulares , Síndrome do Desconforto Respiratório , Humanos , Imunofenotipagem , Neutrófilos
4.
Res Sq ; 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34545358

RESUMO

Neutrophil-mediated secondary tissue injury underlies acute respiratory distress syndrome (ARDS) and progression to multi-organ-failure (MOF) and death, processes linked to severe COVID19. This 'innocent bystander' tissue injury arises in dysregulated hyperinflammatory states from neutrophil functions and neutrophil extracellular traps (NETs) intended to kill pathogens, but injure cells instead, causing MOF. Insufficiency of prior therapeutic approaches suggest need to identify dysregulated neutrophil-subset(s) and induce subset-specific apoptosis critical for neutrophil function-shutdown and clearance. We hypothesized that neutrophils expressing the pro-survival dual endothelin-1/signal peptide receptor, DEspR, are apoptosis-resistant just like DEspR+ cancer cells, hence comprise a consequential pathogenic neutrophil-subset in ARDS and COVID19-ARDS. Here, we report correlation of circulating DEspR+CD11b+ activated neutrophils (DESpR+actNs) and NETosing-neutrophils with severity in ARDS and in COVID19-ARDS, increased DEspR+ neutrophils and monocytes in post-mortem ARDS-patient lung sections, and neutrophil DEspR/ET1 receptor/ligand autocrine loops in severe COVID19. Unlike DEspR[-] neutrophils, ARDS patient DEspR+actNs exhibit apoptosis-resistance, which decreased upon ex vivo treatment with humanized anti-DEspR-IgG4S228P antibody, hu6g8. Ex vivo live-cell imaging of non-human primate DEspR+actNs showed hu6g8 target-engagement, internalization, and induction of apoptosis. Altogether, data differentiate DEspR+actNs as a targetable neutrophil-subset associated with ARDS and COVID19-ARDS severity, and suggest DEspR-inhibition as a potential therapeutic paradigm.

5.
Pulm Med ; 2021: 5488591, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239729

RESUMO

The S100 protein family consists of over 20 members in humans that are involved in many intracellular and extracellular processes, including proliferation, differentiation, apoptosis, Ca2 + homeostasis, energy metabolism, inflammation, tissue repair, and migration/invasion. Although there are structural similarities between each member, they are not functionally interchangeable. The S100 proteins function both as intracellular Ca2+ sensors and as extracellular factors. Dysregulated responses of multiple members of the S100 family are observed in several diseases, including the lungs (asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cystic fibrosis, pulmonary hypertension, and lung cancer). To this degree, extensive research was undertaken to identify their roles in pulmonary disease pathogenesis and the identification of inhibitors for several S100 family members that have progressed to clinical trials in patients for nonpulmonary conditions. This review outlines the potential role of each S100 protein in pulmonary diseases, details the possible mechanisms observed in diseases, and outlines potential therapeutic strategies for treatment.


Assuntos
Pneumopatias , Proteínas S100 , Biomarcadores/análise , Biomarcadores/metabolismo , Cálcio/metabolismo , Desenvolvimento de Medicamentos , Homeostase , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Pneumopatias/tratamento farmacológico , Pneumopatias/imunologia , Pneumopatias/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Proteínas S100/imunologia , Proteínas S100/metabolismo
7.
Am J Physiol Lung Cell Mol Physiol ; 319(6): L1021-L1035, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32964723

RESUMO

S100 calcium-binding protein A9 (S100A9) is elevated in plasma and bronchoalveolar lavage fluid (BALF) of patients with chronic obstructive pulmonary disease (COPD), and aging enhances S100A9 expression in several tissues. Currently, the direct impact of S100A9-mediated signaling on lung function and within the aging lung is unknown. Here, we observed that elevated S100A9 levels in human BALF correlated with age. Elevated lung levels of S100A9 were higher in older mice compared with in young animals and coincided with pulmonary function changes. Both acute and chronic exposure to cigarette smoke enhanced S100A9 levels in age-matched mice. To examine the direct role of S100A9 on the development of COPD, S100a9-/- mice or mice administered paquinimod were exposed to chronic cigarette smoke. S100A9 depletion and inhibition attenuated the loss of lung function, pressure-volume loops, airway inflammation, lung compliance, and forced expiratory volume in 0.05 s/forced vital capacity, compared with age-matched wild-type or vehicle-administered animals. Loss of S100a9 signaling reduced cigarette smoke-induced airspace enlargement, alveolar remodeling, lung destruction, ERK and c-RAF phosphorylation, matrix metalloproteinase-3 (MMP-3), matrix metalloproteinase-9 (MMP-9), monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), and keratinocyte-derived chemokine (KC) release into the airways. Paquinimod administered to nonsmoked, aged animals reduced age-associated loss of lung function. Since fibroblasts play a major role in the production and maintenance of extracellular matrix in emphysema, primary lung fibroblasts were treated with the ERK inhibitor LY3214996 or the c-RAF inhibitor GW5074, resulting in less S100A9-induced MMP-3, MMP-9, MCP-1, IL-6, and IL-8. Silencing Toll-like receptor 4 (TLR4), receptor for advanced glycation endproducts (RAGE), or extracellular matrix metalloproteinase inducer (EMMPRIN) prevented S100A9-induced phosphorylation of ERK and c-RAF. Our data suggest that S100A9 signaling contributes to the progression of smoke-induced and age-related COPD.


Assuntos
Calgranulina B/metabolismo , Mediadores da Inflamação/metabolismo , Doença Pulmonar Obstrutiva Crônica/etiologia , Fumaça/efeitos adversos , Animais , Pulmão/metabolismo , Camundongos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/metabolismo , Enfisema Pulmonar/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Capacidade Vital/fisiologia
8.
Thorax ; 71(12): 1119-1129, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27558745

RESUMO

BACKGROUND: The use of electronic (e)-cigarettes is increasing rapidly, but their lung health effects are not established. Clinical studies examining the potential long-term impact of e-cigarette use on lung health will take decades. To address this gap in knowledge, this study investigated the effects of exposure to aerosolised nicotine-free and nicotine-containing e-cigarette fluid on mouse lungs and normal human airway epithelial cells. METHODS: Mice were exposed to aerosolised phosphate-buffered saline, nicotine-free or nicotine-containing e-cigarette solution, 1-hour daily for 4 months. Normal human bronchial epithelial (NHBE) cells cultured at an air-liquid interface were exposed to e-cigarette vapours or nicotine solutions using a Vitrocell smoke exposure robot. RESULTS: Inhalation of nicotine-containing e-cigarettes increased airway hyper-reactivity, distal airspace enlargement, mucin production, cytokine and protease expression. Exposure to nicotine-free e-cigarettes did not affect these lung parameters. NHBE cells exposed to nicotine-containing e-cigarette vapour showed impaired ciliary beat frequency, airway surface liquid volume, cystic fibrosis transmembrane regulator and ATP-stimulated K+ ion conductance and decreased expression of FOXJ1 and KCNMA1. Exposure of NHBE cells to nicotine for 5 days increased interleukin (IL)-6 and IL-8 secretion. CONCLUSIONS: Exposure to inhaled nicotine-containing e-cigarette fluids triggered effects normally associated with the development of COPD including cytokine expression, airway hyper-reactivity and lung tissue destruction. These effects were nicotine-dependent both in the mouse lung and in human airway cells, suggesting that inhaled nicotine contributes to airway and lung disease in addition to its addictive properties. Thus, these findings highlight the potential dangers of nicotine inhalation during e-cigarette use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina/efeitos adversos , Nicotina/toxicidade , Doença Pulmonar Obstrutiva Crônica/etiologia , Tabagismo/complicações , Administração por Inalação , Adulto , Animais , Apoptose/efeitos dos fármacos , Brônquios/efeitos dos fármacos , Brônquios/metabolismo , Células Cultivadas , Cílios/efeitos dos fármacos , Cílios/fisiologia , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Humanos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Cloreto de Metacolina , Camundongos Endogâmicos A , Pessoa de Meia-Idade , Mucinas/biossíntese , Nicotina/administração & dosagem , Nicotina/farmacologia , Peptídeo Hidrolases/biossíntese , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia
9.
Blood ; 124(7): 999-1009, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-24934256

RESUMO

Studies have endeavored to reconcile whether dysfunction of neutrophils in people with cystic fibrosis (CF) is a result of the genetic defect or is secondary due to infection and inflammation. In this study, we illustrate that disrupted function of the CF transmembrane conductance regulator (CFTR), such as that which occurs in patients with ∆F508 and/or G551D mutations, correlates with impaired degranulation of antimicrobial proteins. We demonstrate that CF blood neutrophils release less secondary and tertiary granule components compared with control cells and that activation of the low-molecular-mass GTP-binding protein Rab27a, involved in the regulation of granule trafficking, is defective. The mechanism leading to impaired degranulation involves altered ion homeostasis caused by defective CFTR function with increased cytosolic levels of chloride and sodium, yet decreased magnesium measured in CF neutrophils. Decreased magnesium concentration in vivo and in vitro resulted in significantly decreased levels of GTP-bound Rab27a. Treatment of G551D patients with the ion channel potentiator ivacaftor resulted in normalized neutrophil cytosolic ion levels and activation of Rab27a, thereby leading to increased degranulation and bacterial killing. Our results confirm that intrinsic alterations of circulating neutrophils from patients with CF are corrected by ivacaftor, thus illustrating additional clinical benefits for CFTR modulator therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Fibrose Cística/metabolismo , Neutrófilos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Adulto , Aminofenóis/uso terapêutico , Degranulação Celular/efeitos dos fármacos , Degranulação Celular/genética , Células Cultivadas , Cloretos/metabolismo , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Eletroforese em Gel Bidimensional , Feminino , Homeostase/genética , Humanos , Immunoblotting , Magnésio/metabolismo , Masculino , Mutação , Neutrófilos/efeitos dos fármacos , Neutrófilos/fisiologia , Transporte Proteico/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Quinolonas/uso terapêutico , Sódio/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem , Proteínas rab27 de Ligação ao GTP
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA