Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Acta Biomater ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38969078

RESUMO

Osteocytes perceive and process mechanical stimuli in the lacuno-canalicular network in bone. As a result, they secrete signaling molecules that mediate bone formation and resorption. To date, few three-dimensional (3D) models exist to study the response of mature osteocytes to biophysical stimuli that mimic fluid shear stress and substrate strain in a mineralized, biomimetic bone-like environment. Here we established a biomimetic 3D bone model by utilizing a state-of-art perfusion bioreactor platform where immortomouse/Dmp1-GFP-derived osteoblastic IDG-SW3 cells were differentiated into mature osteocytes. We evaluated proliferation and differentiation properties of the cells on 3D microporous scaffolds of decellularized bone (dBone), poly(L-lactide-co-trimethylene carbonate) lactide (LTMC), and beta-tricalcium phosphate (ß-TCP) under physiological fluid flow conditions over 21 days. Osteocyte viability and proliferation were similar on the scaffolds with equal distribution of IDG-SW3 cells on dBone and LTMC scaffolds. After seven days, the differentiation marker alkaline phosphatase (Alpl), dentin matrix acidic phosphoprotein 1 (Dmp1), and sclerostin (Sost) were significantly upregulated in IDG-SW3 cells (p = 0.05) on LTMC scaffolds under fluid flow conditions at 1.7 ml/min, indicating rapid and efficient maturation into osteocytes. Osteocytes responded by inducing the mechanoresponsive genes FBJ osteosarcoma oncogene (Fos) and prostaglandin-endoperoxide synthase 2 (Ptgs2) under perfusion and dynamic compressive loading at 1 Hz with 5% strain. Together, we successfully created a 3D biomimetic platform as a robust tool to evaluate osteocyte differentiation and mechanobiology in vitro while recapitulating in vivo mechanical cues such as fluid flow within the lacuno-canalicular network. STATEMENT OF SIGNIFICANCE: This study highlights the importance of creating a three-dimensional (3D) in vitro model to study osteocyte differentiation and mechanobiology, as cellular functions are limited in two-dimensional (2D) models lacking in vivo tissue organization. By using a perfusion bioreactor platform, physiological conditions of fluid flow and compressive loading were mimicked to which osteocytes are exposed in vivo. Microporous poly(L-lactide-co-trimethylene carbonate) lactide (LTMC) scaffolds in 3D are identified as a valuable tool to create a favorable environment for osteocyte differentiation and to enable mechanical stimulation of osteocytes by perfusion and compressive loading. The LTMC platform imitates the mechanical bone environment of osteocytes, allowing the analysis of the interaction with other cell types in bone under in vivo biophysical stimuli.

2.
Cancer Res Commun ; 4(4): 1150-1164, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38598843

RESUMO

Multiple myeloma involves early dissemination of malignant plasma cells across the bone marrow; however, the initial steps of dissemination remain unclear. Human bone marrow-derived mesenchymal stromal cells (hMSC) stimulate myeloma cell expansion (e.g., IL6) and simultaneously retain myeloma cells via chemokines (e.g., CXCL12) and adhesion factors. Hence, we hypothesized that the imbalance between cell division and retention drives dissemination. We present an in vitro model using primary hMSCs cocultured with INA-6 myeloma cells. Time-lapse microscopy revealed proliferation and attachment/detachment dynamics. Separation techniques (V-well adhesion assay and well plate sandwich centrifugation) were established to isolate MSC-interacting myeloma subpopulations that were characterized by RNA sequencing, cell viability, and apoptosis. Results were correlated with gene expression data (n = 837) and survival of patients with myeloma (n = 536). On dispersed hMSCs, INA-6 saturate hMSC surface before proliferating into large homotypic aggregates, from which single cells detached completely. On confluent hMSCs, aggregates were replaced by strong heterotypic hMSC-INA-6 interactions, which modulated apoptosis time dependently. Only INA-6 daughter cells (nMA-INA6) detached from hMSCs by cell division but sustained adherence to hMSC-adhering mother cells (MA-INA6). Isolated nMA-INA6 indicated hMSC autonomy through superior viability after IL6 withdrawal and upregulation of proliferation-related genes. MA-INA6 upregulated adhesion and retention factors (CXCL12), that, intriguingly, were highly expressed in myeloma samples from patients with longer overall and progression-free survival, but their expression decreased in relapsed myeloma samples. Altogether, in vitro dissemination of INA-6 is driven by detaching daughter cells after a cycle of hMSC-(re)attachment and proliferation, involving adhesion factors that represent a bone marrow-retentive phenotype with potential clinical relevance. SIGNIFICANCE: Novel methods describe in vitro dissemination of myeloma cells as detachment of daughter cells after cell division. Myeloma adhesion genes were identified that counteract in vitro detachment with potential clinical relevance.


Assuntos
Adesão Celular , Proliferação de Células , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/patologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Apoptose , Técnicas de Cocultura , Linhagem Celular Tumoral , Agregação Celular , Sobrevivência Celular
4.
Cancers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37568823

RESUMO

Multiple myeloma (MM) frequently induces persisting osteolytic manifestations despite hematologic treatment response. This study aimed to establish a biometrically valid study endpoint for bone remineralization through quantitative and qualitative analyses in sequential CT scans. Twenty patients (seven women, 58 ± 8 years) with newly diagnosed MM received standardized induction therapy comprising the anti-SLAMF7 antibody elotuzumab, carfilzomib, lenalidomide, and dexamethasone (E-KRd). All patients underwent whole-body low-dose CT scans before and after six cycles of E-KRd. Two radiologists independently recorded osteolytic lesion sizes, as well as the presence of cortical destruction, pathologic fractures, rim and trabecular sclerosis. Bland-Altman analyses and Krippendorff's α were employed to assess inter-reader reliability, which was high for lesion size measurement (standard error 1.2 mm) and all qualitative criteria assessed (α ≥ 0.74). After six cycles of E-KRd induction, osteolytic lesion size decreased by 22% (p < 0.001). While lesion size response did not correlate with the initial lesion size at baseline imaging (Pearson's r = 0.144), logistic regression analysis revealed that the majority of responding osteolyses exhibited trabecular sclerosis (p < 0.001). The sum of osteolytic lesion sizes on sequential CT scans defines a reliable study endpoint to characterize bone remineralization. Patient level response is strongly associated with the presence of trabecular sclerosis.

6.
Support Care Cancer ; 30(11): 9615-9623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36190557

RESUMO

PURPOSE: Multiple myeloma (MM) is a severe hemato-oncological disease with high mortality and increasing incidence rate. Since evidence on exercise therapy in MM patients remains limited, this study examines feasibility, adherence, and efficacy based on real-life data from an oncologic care structure. METHODS: A data evaluation of MM patients who participated in the oncologic exercise and movement therapy (OTT) at the Cologne University Hospital between 2012 and 2019 was conducted. The patient flow was incrementally reduced to four cohorts, intention-to-treat cohort (ITTC), safety cohort (SC), adherence cohort (AC), and efficacy cohort (EC). Cohorts were evaluated descriptively and by means of correlation analysis as well as group and time comparisons. RESULTS: Thirty patients registered at the OTT between 2012 and 2019 (ITTC). The SC (N = 26) attended exercise therapy on average about one session per week over a period of 8 months. One-third dropped out within 3 months. In the AC (N = 15), BMI at baseline exhibited a strong and very significant negative correlation with exercise adherence. In the EC (N = 8), a significant improvement in physical functioning and a tendency towards significance in fatigue reduction between two measurement points was observed. No adverse events were documented. CONCLUSIONS: The present observatory study reveals safety and feasibility while indicating adherence and efficacy of exercising MM patients under real-life therapy circumstances. Found obstacles to exercising as well as improvements in questionnaire scale scores need to be further examined in confirmatory study designs.


Assuntos
Mieloma Múltiplo , Humanos , Estudos de Viabilidade , Mieloma Múltiplo/terapia , Terapia por Exercício/efeitos adversos , Exercício Físico , Inquéritos e Questionários
7.
Int J Mol Sci ; 22(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917250

RESUMO

Limiting bone resorption and regenerating bone tissue are treatment goals in myeloma bone disease (MMBD). Physical stimuli such as mechanical loading prevent bone destruction and enhance bone mass in the MOPC315.BM.Luc model of MMBD. It is unknown whether treatment with the Bruton's tyrosine kinase inhibitor CC-292 (spebrutinib), which regulates osteoclast differentiation and function, augments the anabolic effect of mechanical loading. CC-292 was administered alone and in combination with axial compressive tibial loading in the MOPC315.BM.Luc model for three weeks. However, neither CC-292 alone nor its use in combination with mechanical loading was more effective in reducing osteolytic bone disease or rescuing bone mass than mechanical stimuli alone, as evidenced by microcomputed tomography (microCT) and histomorphometric analysis. Further studies are needed to investigate novel anti-myeloma and anti-resorptive strategies in combination with physical stimuli to improve treatment of MMBD.


Assuntos
Acrilamidas/administração & dosagem , Doenças Ósseas/etiologia , Doenças Ósseas/prevenção & controle , Mieloma Múltiplo/complicações , Inibidores de Proteínas Quinases/administração & dosagem , Pirimidinas/administração & dosagem , Estresse Mecânico , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Animais , Doenças Ósseas/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Osteólise/etiologia , Osteólise/patologia , Osteólise/prevenção & controle , Microtomografia por Raio-X
8.
Acta Biomater ; 119: 247-258, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130307

RESUMO

Bone continually adapts to changing external loading conditions via (re)modeling (modeling and remodeling) processes. While physical activity is known to beneficially enhance bone mass in healthy individuals, little is known in how physical stimuli affect osteolytic bone destruction in patients suffering from multiple myeloma bone disease. Multiple myeloma (MM) is caused by malignant plasma cells in the bone marrow, shifting the balance in bone remodeling towards massive resorption. We hypothesized that in vivo tibial mechanical loading has anabolic effects in mice with locally injected MOPC315.BM.Luc cells. Conventional microCT analysis revealed enhanced cortical bone mass and microstructure in loaded compared to nonloaded mice. State-of-the-art time-lapse microCT based image analysis demonstrated bone (re)modeling processes at the endosteal and periosteal surfaces as the underlying causes of increased bone mass. Loading prevented the progression and development of osteolytic destruction. Physical stimuli also diminished local MM cell growth and dissemination evidenced by quantification of MM cell-specific immunoglobulin A levels in the serum of mice and by bioluminescence analysis. These data indicate that mechanical loading not only rescues the bone phenotype, but also exerts cell-extrinsic anti-myeloma effects in the MOPC315.BM.Luc model. In conclusion, the use of physical stimuli should be further investigated as an anabolic treatment for osteolytic bone destruction in patients with MM.


Assuntos
Mieloma Múltiplo , Osteólise , Animais , Medula Óssea , Remodelação Óssea , Osso e Ossos , Humanos , Camundongos , Mieloma Múltiplo/complicações
9.
J Bone Oncol ; 25: 100323, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33083217

RESUMO

OBJECTIVE: Monoclonal Gammopathy of Undetermined Significance (MGUS) is a risk factor for reduced physical performance, osteoporosis, and fractures due to compromised musculoskeletal metabolism. In this condition it is unknown whether whole-body vibration (WBV) exercise favorably alters physical performance and bone metabolism. METHODS: To evaluate the effect of three-months WBV exercise (30 min; 2x/week) including an optional three-month extension on physical performance, bone metabolism and bone mineral density. Endpoints included functional assessments, bone turnover markers and bone mineral density assessed by peripheral quantitative computed tomography of the tibia. RESULTS: Fifteen MGUS patients (median age 62.0, nine female) completed the first three months of which ten completed the three-month extension. Measures of physical functioning including chair rise test, timed up and go and 6-minute walk test improved (p = 0.007; p = 0.009; p = 0.005) after three and six months of WBV exercise. Total tibial bone mineral density remained unaltered (p > 0.05). WBV exercise tended to increase levels of sclerostin (p = 0.093) with a transient increase in osteoclast resorption markers (N-terminal telopeptide of collagen type 1, tartrate resistant acid phosphatase 5b) after three months while Dickkopf-1 (p = 0.093), procollagen I N-terminal propeptide (p = 0.074) and total alkaline phosphatase (p = 0.016) appeared to decline. No exercise-related adverse events were reported. CONCLUSION: WBV exercise in MGUS patients improves indicators of physical performance. Observed trends in bone turnover markers and changes in distal tibial bone mineral density may indicate a regulatory effect of WBV exercise on bone metabolism and warrants further evaluation by large scale studies.

10.
J Oncol ; 2020: 3985315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32684931

RESUMO

Multiple myeloma (MM) bone disease is characterized by osteolytic bone tissue destruction resulting in bone pain, fractures, vertebral collapse, and spinal cord compression in patients. Upon initial diagnosis of MM, almost 80% of patients suffer from bone disease. Earlier diagnosis and intervention in MM bone disease would potentially improve treatment outcome and patient survival. New preclinical models are needed for developing novel diagnostic markers of bone structural changes as early as possible in the disease course. Here, we report a proof-of-concept, syngeneic, intrafemoral MOPC315.BM MM murine model in skeletally mature BALB/c mice for detection and characterization of very early changes in the extracellular matrix (ECM) of MM-injected animals. Bioluminescence imaging (BLI) in vivo confirmed myeloma engraftment in 100% of the animals with high osteoclast activity within 21 days after tumor cell inoculation. Early signs of aggressive bone turnover were observed on the outer bone surfaces by high-resolution microcomputed tomography (microCT). Synchrotron phase contrast-enhanced microcomputer tomography (PCE-CT) revealed very local microarchitecture differences highlighting numerous active sites of erosion and new bone at the micrometer scale. Correlative backscattered electron imaging (BSE) and confocal laser scanning microscopy allowed direct comparison of mineralized and nonmineralized matrix changes in the cortical bone. The osteocyte lacunar-canalicular network (OLCN) architecture was disorganized, and irregular-shaped osteocyte lacunae were observed in MM-injected bones after 21 days. Our model provides a potential platform to further evaluate pathological MM bone lesion development at the micro- and ultrastructural levels. These promising results make it possible to combine material science and pharmacological investigations that may improve early detection and treatment of MM bone disease.

12.
Dtsch Med Wochenschr ; 145(12): 836-842, 2020 06.
Artigo em Alemão | MEDLINE | ID: mdl-32557486

RESUMO

Lifestyle factors such as diet, physical activity and exposure to noxious agents are modifiable factors that have a significant impact on the state of health and life expectancy of humans. The following article is intended to provide an overview of current knowledge on the influence of these lifestyle factors on the development and progression of multiple myeloma and is dedicated to the question of the extent to which prevention strategies can be usefully applied.


Assuntos
Mieloma Múltiplo/prevenção & controle , Dieta , Humanos , Estilo de Vida , Prevenção Primária , Prevenção Secundária
13.
Stem Cells Int ; 2019: 5150634, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936923

RESUMO

Skeletal development and remodeling of adult bone are critically controlled by activated NOTCH signaling in genetically modified mice. It is yet unclear whether NOTCH signaling is activated by mechanical strain sensed by bone cells. We found that expression of specific NOTCH target genes is induced after in vivo tibial mechanical loading in wild-type mice. We further applied mechanical strain through cyclic stretching in human bone marrow-derived mesenchymal stromal cells (BMSCs) in vitro by using a bioreactor system and detected upregulation of NOTCH target gene expression. Inhibition of the NOTCH pathway in primary BMSCs as well as telomerase-immortalized human BMSCs (hMSC-TERT) through the gamma-secretase inhibitor GSI XII blocked mechanotransduction and modulated actin cytoskeleton organization. Short-hairpin RNA gene silencing identified NOTCH2 as the key receptor mediating NOTCH effects on hMSC-TERT cells. Our data indicate a functional link between NOTCH activation and mechanotransduction in human BMSCs. We suggest that NOTCH signaling is an important contributor to molecular mechanisms that mediate the bone formation response to mechanical strain.

14.
Biomacromolecules ; 20(2): 916-926, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30571914

RESUMO

Multiple myeloma is a common plasma-cell-derived hematologic neoplasm. While the delivery of growth-inhibiting miRNA to multiple myeloma cells would be a promising strategy to evaluate treatment options, most multiple myeloma cells are transfection-resistant with established methods. Nonviral nanoparticulate transfection systems are particularly promising in this context, but so far struggle with transfection and knockdown efficiency. Here, we present poly(glycidol)-based nanogels with covalently bound cell-penetrating peptide TAT (transactivator of transcription from HIV). TAT facilitated a varying internalization efficiency of the nanogels depending on the cell line. The positively charged peptide also served as complexation agent for miRNA and enabled covalent binding of the TAT/miR-34a complex in the nanogels. These TAT/miRNA-loaded nanogels delivered and released miR-34a with high efficiency into OPM-2 multiple myeloma cells that are known as transfection-resistant. Delivery resulted in efficient downregulation of known target genes such as Notch1, Hey1, Hes6, and Hes1. Thus, these nanogel constructs offer a new tool to enhance gene delivery into multiple myeloma cells with immediate value in cancer research.


Assuntos
Regulação para Baixo/efeitos dos fármacos , MicroRNAs/administração & dosagem , Mieloma Múltiplo/tratamento farmacológico , Nanogéis/química , Linhagem Celular Tumoral , Peptídeos Penetradores de Células/administração & dosagem , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos/métodos , Técnicas de Transferência de Genes , Humanos , MicroRNAs/química , Nanopartículas/química , Propilenoglicóis/química , Transfecção/métodos
15.
Leuk Lymphoma ; 56(7): 2105-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25363400

RESUMO

A better understanding of events triggering chronic myeloid leukemia progression is critical for optimized clinical management of chronic myeloid leukemia (CML). We sought to validate that increased expression of Musashi 2 (MSI2), a post-transcription regulator, is associated with progression and prognosis. Screening of 152 patients with CML showed that MSI2 was significantly decreased among patients with CML in chronic phase (CP) at diagnosis (p < 0.0001), but found no significant difference between the normal control group and treated patients with CML in CP. Moreover MSI2 was significantly increased (p < 0.0001) in patients with advance disease (AD) CML. Furthermore, our human hematopoietic cell line data imply that MSI2 and BCR-ABL1 mRNA expression are correlated. However, these data cast a doubt on earlier reports that MSI2 effects HES1 expression via NUMB-NOTCH signaling.


Assuntos
Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide de Fase Crônica/metabolismo , Leucemia Mieloide de Fase Crônica/patologia , Proteínas de Ligação a RNA/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Progressão da Doença , Feminino , Seguimentos , Proteínas de Fusão bcr-abl/genética , Células-Tronco Hematopoéticas/patologia , Humanos , Técnicas Imunoenzimáticas , Leucemia Mieloide de Fase Crônica/genética , Leucemia Mieloide de Fase Crônica/mortalidade , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Reação em Cadeia da Polimerase em Tempo Real , Estudos Retrospectivos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Taxa de Sobrevida , Regulação para Cima , Adulto Jovem
16.
PLoS One ; 9(10): e109018, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25272036

RESUMO

Multiple myeloma is a bone marrow plasma cell tumor which is supported by the external growth factors APRIL and IL-6, among others. Recently, we identified eosinophils and megakaryocytes to be functional components of the micro-environmental niches of benign bone marrow plasma cells and to be important local sources of these cytokines. Here, we investigated whether eosinophils and megakaryocytes also support the growth of tumor plasma cells in the MOPC315.BM model for multiple myeloma. As it was shown for benign plasma cells and multiple myeloma cells, IL-6 and APRIL also supported MOPC315.BM cell growth in vitro, IL-5 had no effect. Depletion of eosinophils in vivo by IL-5 blockade led to a reduction of the early myeloma load. Consistent with this, myeloma growth in early stages was retarded in eosinophil-deficient ΔdblGATA-1 mice. Late myeloma stages were unaffected, possibly due to megakaryocytes compensating for the loss of eosinophils, since megakaryocytes were found to be in contact with myeloma cells in vivo and supported myeloma growth in vitro. We conclude that eosinophils and megakaryocytes in the niches for benign bone marrow plasma cells support the growth of malignant plasma cells. Further investigations are required to test whether perturbation of these niches represents a potential strategy for the treatment of multiple myeloma.


Assuntos
Medula Óssea/patologia , Proliferação de Células , Eosinófilos/citologia , Megacariócitos/citologia , Mieloma Múltiplo/patologia , Animais , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos BALB C
17.
J Immunol ; 189(11): 5105-11, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23169863

RESUMO

Long-lived plasma cells survive in a protected microenvironment for years or even a lifetime and provide humoral memory by establishing persistent Ab titers. Long-lived autoreactive, malignant, and allergen-specific plasma cells are likewise protected in their survival niche and are refractory to immunosuppression, B cell depletion, and irradiation. Their elimination remains an essential therapeutic challenge. Recent data indicate that long-lived plasma cells reside in a multicomponent plasma cell niche with a stable mesenchymal and a dynamic hematopoietic component, both providing essential soluble and membrane-bound survival factors. Alternative niches with different hematopoietic cell components compensate fluctuations of single cell types but may also harbor distinct plasma cell subsets. In this Brief Review, we discuss conventional therapies in autoimmunity and multiple myeloma in comparison with novel drugs that target plasma cells and their niches. In the future, such strategies may enable the specific depletion of pathogenic plasma cells while leaving the protective humoral memory intact.


Assuntos
Autoimunidade/efeitos dos fármacos , Hipersensibilidade/patologia , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Anticorpos Monoclonais/farmacologia , Autoanticorpos/biossíntese , Autoanticorpos/imunologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Citocinas/antagonistas & inibidores , Citocinas/imunologia , Humanos , Hipersensibilidade/tratamento farmacológico , Hipersensibilidade/imunologia , Tolerância Imunológica/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Terapia de Alvo Molecular , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/imunologia , Plasmócitos/efeitos dos fármacos , Plasmócitos/imunologia , Receptores de Citocinas/antagonistas & inibidores , Receptores de Citocinas/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
18.
PLoS One ; 7(12): e51892, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23284805

RESUMO

Multiple myeloma (MM) is a lethal human cancer characterized by a clonal expansion of malignant plasma cells in bone marrow. Mouse models of human MM are technically challenging and do not always recapitulate human disease. Therefore, new mouse models for MM are needed. Mineral-oil induced plasmacytomas (MOPC) develop in the peritoneal cavity of oil-injected BALB/c mice. However, MOPC typically grow extramedullary and are considered poor models of human MM. Here we describe an in vivo-selected MOPC315 variant, called MOPC315.BM, which can be maintained in vitro. When injected i.v. into BALB/c mice, MOPC315.BM cells exhibit tropism for bone marrow. As few as 10(4) MOPC315.BM cells injected i.v. induced paraplegia, a sign of spinal cord compression, in all mice within 3-4 weeks. MOPC315.BM cells were stably transfected with either firefly luciferase (MOPC315.BM.Luc) or DsRed (MOPC315.BM.DsRed) for studies using noninvasive imaging. MOPC315.BM.Luc cells were detected in the tibiofemoral region already 1 hour after i.v. injection. Bone foci developed progressively, and as of day 5, MM cells were detected in multiple sites in the axial skeleton. Additionally, the spleen (a hematopoietic organ in the mouse) was invariably affected. Luminescent signals correlated with serum myeloma protein concentration, allowing for easy tracking of tumor load with noninvasive imaging. Affected mice developed osteolytic lesions. The MOPC315.BM model employs a common strain of immunocompetent mice (BALB/c) and replicates many characteristics of human MM. The model should be suitable for studies of bone marrow tropism, development of osteolytic lesions, drug testing, and immunotherapy in MM.


Assuntos
Medula Óssea/patologia , Modelos Animais de Doenças , Camundongos , Mieloma Múltiplo/patologia , Osteólise/patologia , Animais , Linhagem Celular Tumoral , Expressão Gênica , Genes Reporter , Medições Luminescentes , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Imagem Molecular , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/mortalidade , Osteólise/diagnóstico por imagem , Radiografia , Transfecção
19.
Haematologica ; 96(9): 1261-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21565905

RESUMO

BACKGROUND: The control of translation initiation is a crucial component in the regulation of gene expression. The eukaryotic initiation factor 2α (eIF2α) mediates binding of the initiator transfer-messenger-RNA to the AUG initiation codon, and thus controls a rate-limiting step in translation initiation. Phosphorylation of eIF2α at serine 51 is linked to cellular stress response and attenuates translation initiation. The biochemistry of translation inhibition mediated by eIF2α phosphorylation is well characterized, yet the physiological importance in hematopoiesis remains only partially known. DESIGN AND METHODS: Using hematopoietic stem cells carrying a non-phosphorylatable mutant form of eIF2α (eIF2αAA), we examined the efficiency of reconstitution in wild-type and B-cell-deficient microMT C57BL/6 recipients in two independent models. RESULTS: We provide evidence that phosphorylation-deficient eIF2α mutant hematopoietic stem cells may repopulate lethally irradiated mice but have a defect in the development and maintenance of newly formed B cells in the bone marrow and of naïve follicular B cells in the periphery. The mature B-cell compartment is markedly reduced in bone marrow, spleen and peripheral blood, and B-cell receptor-mediated proliferation in vitro and serum immunoglobulin secretion in vivo are impaired. CONCLUSIONS: The data suggest that regulation of translation through eIF2α phosphorylation is dispensable in hematopoietic reconstitution but essential during late B-cell development.


Assuntos
Linfócitos B/imunologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Animais , Formação de Anticorpos/genética , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Quimera , Fator de Iniciação 2 em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação/genética , Fosforilação , Células-Tronco/metabolismo , Transdução Genética
20.
Blood ; 112(8): 3339-47, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18684866

RESUMO

The malignant Hodgkin/Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (HL) are derived from mature B cells, but have lost a considerable part of the B cell-specific gene expression pattern. Consequences of such a lineage infidelity for lymphoma pathogenesis are currently not defined. Here, we report that HRS cells aberrantly express the common cytokine-receptor gamma-chain (gamma(c)) cytokine IL-21, which is usually restricted to a subset of CD4(+) T cells, and the corresponding IL-21 receptor. We demonstrate that IL-21 activates STAT3 in HRS cells, up-regulates STAT3 target genes, and protects HRS cells from CD95 death receptor-induced apoptosis. Furthermore, IL-21 is involved in up-regulation of the CC chemokine macrophage-inflammatory protein-3alpha (MIP-3alpha) in HRS cells. MIP-3alpha in turn attracts CCR6(+)CD4(+)CD25(+)FoxP3(+)CD127(lo) regulatory T cells toward HRS cells, which might favor their immune escape. Together, these data support the concept that aberrant expression of B lineage-inappropriate genes plays an important role for the biology of HL tumor cells.


Assuntos
Quimiocina CCL20/metabolismo , Regulação Neoplásica da Expressão Gênica , Doença de Hodgkin/metabolismo , Interleucinas/metabolismo , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular Tumoral , Linhagem da Célula , Proliferação de Células , Humanos , Sistema Imunitário , Interleucina-6/metabolismo , Receptor fas/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA