Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Brain ; 147(6): 2114-2127, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38227798

RESUMO

Mutations in the Microrchidia CW-type zinc finger 2 (MORC2) GHKL ATPase module cause a broad range of neuropathies, such as Charcot-Marie-Tooth disease type 2Z; however, the aetiology and therapeutic strategy are not fully understood. Previously, we reported that the Morc2a p.S87L mouse model exhibited neuropathy and muscular dysfunction through DNA damage accumulation. In the present study, we analysed the gene expression of Morc2a p.S87L mice and designated the primary causing factor. We investigated the pathological pathway using Morc2a p.S87L mouse embryonic fibroblasts and human fibroblasts harbouring MORC2 p.R252W. We subsequently assessed the therapeutic effect of gene therapy administered to Morc2a p.S87L mice. This study revealed that Morc2a p.S87L causes a protein synthesis defect, resulting in the loss of function of Morc2a and high cellular apoptosis induced by high hydroxyl radical levels. We considered the Morc2a GHKL ATPase domain as a therapeutic target because it simultaneously complements hydroxyl radical scavenging and ATPase activity. We used the adeno-associated virus (AAV)-PHP.eB serotype, which has a high CNS transduction efficiency, to express Morc2a or Morc2a GHKL ATPase domain protein in vivo. Notably, AAV gene therapy ameliorated neuropathy and muscular dysfunction with a single treatment. Loss-of-function characteristics due to protein synthesis defects in Morc2a p.S87L were also noted in human MORC2 p.S87L or p.R252W variants, indicating the correlation between mouse and human pathogenesis. In summary, CMT2Z is known as an incurable genetic disorder, but the present study demonstrated its mechanisms and treatments based on established animal models. This study demonstrates that the Morc2a p.S87L variant causes hydroxyl radical-mediated neuropathy, which can be rescued through AAV-based gene therapy.


Assuntos
Terapia Genética , Animais , Humanos , Camundongos , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/metabolismo , Doença de Charcot-Marie-Tooth/terapia , Dependovirus/genética , Fibroblastos/metabolismo , Terapia Genética/métodos , Radical Hidroxila/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Plant Physiol ; 181(3): 867-880, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31481630

RESUMO

While pepper (Capsicum annuum) is a highly recalcitrant species for genetic transformation studies, plant virus-based vectors can provide alternative and powerful tools for transient regulation and functional analysis of genes of interest in pepper. In this study, we established an effective virus-based vector system applicable for transient gain- and loss-of-function studies in pepper using Broad bean wilt virus2 (BBWV2). We engineered BBWV2 as a dual gene expression vector for simultaneous expression of two recombinant proteins in pepper cells. In addition, we established enhanced and stable expression of recombinant proteins from the BBWV2-based dual vector via coexpression of a heterologous viral suppressor of RNA silencing. We also developed a BBWV2-based virus-induced gene silencing (VIGS) vector, and we successfully silenced the phytoene desaturase gene (PDS) using the BBWV2-based VIGS vector in various pepper cultivars. Additionally, we optimized the BBWV2-based VIGS system in pepper by testing the efficiency of PDS gene silencing under different conditions. This BBWV2-based vector system represents a convenient approach for rapid and simple analysis of gene functions in pepper.


Assuntos
Capsicum/genética , Vetores Genéticos/genética , Vírus de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Fenótipo , Nicotiana/genética
3.
Plant Physiol Biochem ; 141: 325-331, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31207493

RESUMO

Type 2C protein phosphatases (PP2Cs) counteract protein kinases, thereby inhibiting the abscisic acid (ABA)-mediated response to abiotic stress in Arabidopsis thaliana. In the absence of stress, the promoters of PP2C genes (e.g., ABI1, ABI2, and HAI1) are negatively regulated by repressors that suppress gene transcription in a signal-independent manner. Quantitative reverse transcription PCR (RT-qPCR) and chromatin immunoprecipitation (ChIP) assays revealed that the levels of PP2C gene transcripts and RNA polymerase II (RNAPII) that stalled at the transcription start sites (TSS) of PP2C gene loci were increased under salt stress. The salt-induced increases in RNA polymerase-mediated transcription were reduced in 35S:AtMYB44 plants, confirming that AtMYB44 acts as a repressor of PP2C gene transcription. ChIP assays revealed that AtMYB44 repressors are released and nucleosomes are evicted from the promoter regions in response to salt stress. Under these conditions, histone H3 acetylation (H3ac) and methylation (H3K4me3) around the TSS regions significantly increased. The salt-induced increases in PP2C gene transcription were reduced in abf3 plants, indicating that ABF3 activates PP2C gene transcription. Overall, our data indicate that salt stress converts PP2C gene chromatin from a repressor-associated suppression status to an activator-mediated transcription status. In addition, we observed that the Arabidopsis mutant brm-3, which is moderately defective in SWI2/SNF2 chromatin remodeling ATPase BRAHMA (BRM) activity, produced more PP2C gene transcripts under salt stress conditions, indicating that BRM ATPase contributes to the repression of PP2C gene transcription.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/química , Nucleossomos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Estresse Salino , Trifosfato de Adenosina/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Montagem e Desmontagem da Cromatina , Metilação de DNA , RNA Polimerases Dirigidas por DNA/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Regiões Promotoras Genéticas , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
4.
Plant Cell ; 26(12): 4991-5008, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25490915

RESUMO

A pathogen may cause infected plants to promote the performance of its transmitting vector, which accelerates the spread of the pathogen. This positive effect of a pathogen on its vector via their shared host plant is termed indirect mutualism. For example, terpene biosynthesis is suppressed in begomovirus-infected plants, leading to reduced plant resistance and enhanced performance of the whiteflies (Bemisia tabaci) that transmit these viruses. Although begomovirus-whitefly mutualism has been known, the underlying mechanism is still elusive. Here, we identified ßC1 of Tomato yellow leaf curl China virus, a monopartite begomovirus, as the viral genetic factor that suppresses plant terpene biosynthesis. ßC1 directly interacts with the basic helix-loop-helix transcription factor MYC2 to compromise the activation of MYC2-regulated terpene synthase genes, thereby reducing whitefly resistance. MYC2 associates with the bipartite begomoviral protein BV1, suggesting that MYC2 is an evolutionarily conserved target of begomoviruses for the suppression of terpene-based resistance and the promotion of vector performance. Our findings describe how this viral pathogen regulates host plant metabolism to establish mutualism with its insect vector.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Geminiviridae/genética , Hemípteros/fisiologia , Nicotiana/virologia , Terpenos/metabolismo , Fatores de Virulência/fisiologia , Animais , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Vias Biossintéticas/genética , Resistência à Doença/genética , Hemípteros/virologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Transdução de Sinais , Nicotiana/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
5.
Plant J ; 73(3): 483-95, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23067202

RESUMO

The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. ß-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Arabidopsis/genética , Regulação para Baixo , Genes de Plantas , Regiões Promotoras Genéticas
6.
Mol Cells ; 30(3): 271-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20803085

RESUMO

Ethylene-responsive factors (ERFs), within a subgroup of the AP2/ERF transcription factor family, are involved in diverse plant reactions to biotic or abiotic stresses. Here, we report that overexpression of an ERF gene from Brassica rapa ssp. pekinensis (BrERF4) led to improved tolerance to salt and drought stresses in Arabidopsis. It also significantly affected the growth and development of transgenic plants. We detected that salt-induced expressions of a transcriptional repressor gene, AtERF4, and some Ser/Thr protein phosphatase2C genes, ABI1, ABI2 and AtPP2CA, were suppressed in BrERF4-overexpressing Arabidopsis plants. Furthermore, BrERF4 was induced by treatment with ethylene or methyljasmonate, but not by abscisic acid or NaCl in B. rapa. These results suggest that BrERF4 is activated through a network of different signaling pathways in response to salinity and drought.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Repressoras/metabolismo , Acetatos/farmacologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Brassica rapa/efeitos dos fármacos , Brassica rapa/genética , Brassica rapa/metabolismo , Processos de Crescimento Celular/genética , Células Cultivadas , Ciclopentanos/farmacologia , Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Oxilipinas/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Tolerância ao Sal/genética , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/genética , Transgenes/genética
7.
Mol Cells ; 29(1): 71-6, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20016937

RESUMO

The Arabidopsis thaliana transcription factor gene AtMYB44 was induced within 10 min by treatment with methyl jasmonate (MeJA). Wound-induced expression of the gene was observed in local leaves, but not in distal leaves, illustrating jasmonate-independent induction at wound sites. AtMYB44 expression was not abolished in Arabidopsis mutants insensitive to jasmonate (coi1), ethylene (etr1), or abscisic acid (abi3-1) when treated with the corresponding hormones. Moreover, various growth hormones and sugars also induced rapid AtMYB44 transcript accumulation. Thus, AtMYB44 gene activation appears to not be induced by any specific hormone. MeJA-induced activation of jasmonate-responsive genes such as JR2, VSP, LOXII, and AOS was attenuated in transgenic Arabidopsis plants overexpressing the gene (35S:AtMYB44), but significantly enhanced in atmyb44 knockout mutants. The 35S:MYB44 and atmyb44 plants did not show defectiveness in MeJA-induced primary root growth inhibition, indicating that the differences in jasmonate-responsive gene expression observed was not due to alterations in the jasmonate signaling pathway. 35S:AtMYB44 seedlings exhibited slightly elevated chlorophyll levels and less jasmonate- induced anthocyanin accumulation, demonstrating suppression of jasmonate-mediated responses and enhancement of ABA-mediated responses. These observations support the hypothesis of mutual antagonistic actions between jasmonate- and abscisic acid-mediated signaling pathways.


Assuntos
Ácido Abscísico/metabolismo , Acetatos/metabolismo , Proteínas de Arabidopsis/biossíntese , Arabidopsis/genética , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Fatores de Transcrição/biossíntese , Antocianinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes abl/genética , Plantas Geneticamente Modificadas , Receptores de Superfície Celular/biossíntese , Receptores de Superfície Celular/genética , Transdução de Sinais , Fatores de Transcrição/genética , Ativação Transcricional
8.
Mol Cells ; 27(1): 75-81, 2009 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19214436

RESUMO

The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven beta-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Quitina/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Lectinas de Plantas/genética , Regulação para Cima/efeitos dos fármacos , Acetatos/farmacologia , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/química , Northern Blotting , Ciclopentanos/farmacologia , Etilenos/farmacologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Glucuronidase/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos/efeitos dos fármacos , Oxilipinas/farmacologia , Lectinas de Plantas/química , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA