Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 324, 2023 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966243

RESUMO

Gene-environment (G×E) interaction could partially explain missing heritability in traits; however, the magnitudes of G×E interaction effects remain unclear. Here, we estimate the heritability of G×E interaction for body mass index (BMI) by subjecting genome-wide interaction study data of 331,282 participants in the UK Biobank to linkage disequilibrium score regression (LDSC) and linkage disequilibrium adjusted kinships-software for estimating SNP heritability from summary statistics (LDAK-SumHer) analyses. Among 14 obesity-related lifestyle factors, MET score, pack years of smoking, and alcohol intake frequency significantly interact with genetic factors in both analyses, accounting for the partial variance of BMI. The G×E interaction heritability (%) and standard error of these factors by LDSC and LDAK-SumHer are as follows: MET score, 0.45% (0.12) and 0.65% (0.24); pack years of smoking, 0.52% (0.13) and 0.93% (0.26); and alcohol intake frequency, 0.32% (0.10) and 0.80% (0.17), respectively. Moreover, these three factors are partially validated for their interactions with genetic factors in other obesity-related traits, including waist circumference, hip circumference, waist-to-hip ratio adjusted with BMI, and body fat percentage. Our results suggest that G×E interaction may partly explain the missing heritability in BMI, and two G×E interaction loci identified could help in understanding the genetic architecture of obesity.


Assuntos
Interação Gene-Ambiente , Obesidade , Humanos , Índice de Massa Corporal , Obesidade/genética , Fenótipo , Fumar/genética
2.
Lifestyle Genom ; 15(3): 87-97, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35793639

RESUMO

INTRODUCTION: Although many studies have investigated the association between smoking and obesity, very few have analyzed how obesity traits are affected by interactions between genetic factors and smoking. Here, we aimed to identify the loci that affect obesity traits via smoking status-related interactions in European samples. METHODS: We performed stratified analysis based on the smoking status using both the UK Biobank (UKB) data (N = 334,808) and the Genetic Investigation of ANthropometric Traits (GIANT) data (N = 210,323) to identify gene-smoking interaction for obesity traits. We divided the UKB subjects into two groups, current smokers and nonsmokers, based on the smoking status, and performed genome-wide association study (GWAS) for body mass index (BMI), waist circumference adjusted for BMI (WCadjBMI), and waist-hip ratio adjusted for BMI (WHRadjBMI) in each group. And then we carried out the meta-analysis using both GWAS summary statistics of UKB and GIANT for BMI, WCadjBMI, and WHRadjBMI and computed the stratified p values (pstratified) based on the differences between meta-analyzed estimated beta coefficients with standard errors in each group. RESULTS: We identified four genome-wide significant loci in interactions with the smoking status (pstratified < 5 × 10-8): rs336396 (INPP4B) and rs12899135 (near CHRNB4) for BMI, and rs998584 (near VEGFA) and rs6916318 (near RSPO3) for WHRadjBMI. Moreover, we annotated the biological functions of the SNPs using expression quantitative trait loci (eQTL) and GWAS databases, along with publications, which revealed possible mechanisms underlying the association between the smoking status-related genetic variants and obesity. CONCLUSIONS: Our findings suggest that obesity traits can be modified by the smoking status via interactions with genetic variants through various biological pathways.


Assuntos
Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Obesidade/epidemiologia , Obesidade/genética , Fumar/epidemiologia , Fumar/genética , Relação Cintura-Quadril
3.
Sci Rep ; 11(1): 5001, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33654129

RESUMO

Multiple environmental factors could interact with a single genetic factor to affect disease phenotypes. We used Struct-LMM to identify genetic variants that interacted with environmental factors related to body mass index (BMI) using data from the Korea Association Resource. The following factors were investigated: alcohol consumption, education, physical activity metabolic equivalent of task (PAMET), income, total calorie intake, protein intake, carbohydrate intake, and smoking status. Initial analysis identified 7 potential single nucleotide polymorphisms (SNPs) that interacted with the environmental factors (P value < 5.00 × 10-6). Of the 8 environmental factors, PAMET score was excluded for further analysis since it had an average Bayes Factor (BF) value < 1 (BF = 0.88). Interaction analysis using 7 environmental factors identified 11 SNPs (P value < 5.00 × 10-6). Of these, rs2391331 had the most significant interaction (P value = 7.27 × 10-9) and was located within the intron of EFNB2 (Chr 13). In addition, the gene-based genome-wide association study verified EFNB2 gene significantly interacting with 7 environmental factors (P value = 5.03 × 10-10). BF analysis indicated that most environmental factors, except carbohydrate intake, contributed to the interaction of rs2391331 on BMI. Although the replication of the results in other cohorts is warranted, these findings proved the usefulness of Struct-LMM to identify the gene-environment interaction affecting disease.


Assuntos
Índice de Massa Corporal , Interação Gene-Ambiente , Loci Gênicos , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Feminino , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA