Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMB Rep ; 55(3): 136-141, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34488927

RESUMO

Inflammation is one of the body's natural responses to injury and illness as part of the healing process. However, persistent inflammation can lead to chronic inflammatory diseases and multi-organ failure. Altered mitochondrial function has been implicated in several acute and chronic inflammatory diseases by inducing an abnormal inflammatory response. Therefore, treating inflammatory diseases by recovering mitochondrial function may be a potential therapeutic approach. Recently, mitochondrial transplantation has been proven to be beneficial in hyperinflammatory animal models. However, it is unclear how mitochondrial transplantation attenuates inflammatory responses induced by external stimuli. Here, we isolated mitochondria from umbilical cord-derived mesenchymal stem cells, referred as to PN-101. We found that PN-101 could significantly reduce LPS-induced mortality in mice. In addition, in phorbol 12-myristate 13-acetate (PMA)-treated THP-1 macrophages, PN-101 attenuated LPS-induced increase production of pro-inflammatory cytokines. Furthermore, the anti-inflammatory effect of PN-101 was mediated by blockade of phosphorylation, nuclear translocation, and trans-activity of NFκB. Taken together, our results demonstrate that PN-101 has therapeutic potential to attenuate pathological inflammatory responses. [BMB Reports 2022; 55(3): 136-141].


Assuntos
Lipopolissacarídeos , Células-Tronco Mesenquimais , Animais , Citocinas/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Mitocôndrias/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Cordão Umbilical/metabolismo
2.
Oncol Lett ; 13(6): 4925-4932, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28599497

RESUMO

Autocrine motility factor (AMF), which is a secreted form of phosphoglucose isomerase, is mainly secreted by various tumors and has cytokine-like activity. AMF is known to stimulate proliferation, survival and metastasis of cancer cells, and angiogenesis within a tumor. The present study investigated whether inhibition of AMF using targeted-antibodies was able to suppress the growth of cancer. A migration assay using a Boyden chamber was utilized to measure the activity of AMF on the motility of cancer cells. A recombinant human AMF (rhAMF) prepared from E. coli transformed with the pET22b-AMF vector increased the motility of MDA-MB-231 and A549 cells, but it did not affect that of NCI-N87 or HepG2 cells, which exhibited the ability to secrete high amounts of their own endogenous AMF into the culture medium. The extent to which the AMF receptor was expressed on cancer cells did not correlate clearly with the cell motility stimulated by rhAMF. In A549-xenografted nude mice treated with sunitinib or cetuximab, a decrease in the plasma AMF concentration was accompanied by a reduction in tumor weight, suggesting an association between the plasma AMF concentration and anticancer activity. A monoclonal antibody (9A-4H), which revealed a high binding affinity for E. coli-derived rhAMF, significantly suppressed the growth of tumors in Balb/c nude mice transplanted with the human gastric cancer cell line NCI-N87, to the similar extent as trastuzumab, an anticancer antibody. The present study suggests, for the first time, that an antibody specific to AMF may be a therapeutic agent for gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA