Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 65(7): 5407-5432, 2022 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-35315650

RESUMO

Stimulator of interferon genes (STING) is an endoplasmic reticulum-membrane protein that plays important roles in cancer immunotherapy by activating innate immune responses. We designed and synthesized STING modulators and characterized compounds 4a and 4c that share a crucial amidobenzimidazole moiety. In vitro STING binding and cell-based activity assays demonstrated the potency and efficacy of the compounds that function as direct STING agonists by stimulating STING downstream signaling and promoting type I interferon immune responses. In vitro metabolic studies and the pharmacokinetic properties of the compounds led us to investigate their anticancer activity in an in vivo syngeneic model. Intravenous injection of compounds 4a and 4c significantly decreased tumor volume in a CT26 murine colorectal carcinoma model, and the immunological memory-derived cancer inhibition was observed in 4c-treated mouse models. The present results suggest the therapeutic potential of the compounds for cancer immunotherapy via STING-mediated immune activation.


Assuntos
Neoplasias , Receptores de Interferon , Animais , Fatores Imunológicos/uso terapêutico , Imunoterapia/métodos , Interferons , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias/tratamento farmacológico , Receptores de Interferon/uso terapêutico
2.
Biomedicines ; 10(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35052713

RESUMO

In cancer immunotherapy, the cyclic GMP-AMP synthase-stimulator of interferon genes (STING) pathway is an attractive target for switching the tumor immunophenotype from 'cold' to 'hot' through the activation of the type I interferon response. To develop a new chemical entity for STING activator to improve cyclic GMP-AMP (cGAMP)-induced innate immune response, we identified KAS-08 via the structural modification of DW2282, which was previously reported as an anti-cancer agent with an unknown mechanism. Further investigation revealed that direct STING binding or the enhanced phosphorylation of STING and downstream effectors were responsible for DW2282-or KAS-08-mediated STING activity. Furthermore, KAS-08 was validated as an effective STING pathway activator in vitro and in vivo. The synergistic effect of cGAMP-mediated immunity and efficient anti-cancer effects successfully demonstrated the therapeutic potential of KAS-08 for combination therapy in cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA