Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 30(12): 1640-1657.e8, 2023 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-38029740

RESUMO

The liver is known for its remarkable regenerative ability through proliferation of hepatocytes. Yet, during chronic injury or severe hepatocyte death, proliferation of hepatocytes is exhausted. To overcome this hurdle, we propose vascular-endothelial-growth-factor A (VEGFA) as a therapeutic means to accelerate biliary epithelial-cell (BEC)-to-hepatocyte conversion. Investigation in zebrafish establishes that blocking VEGF receptors abrogates BEC-driven liver repair, while VEGFA overexpression promotes it. Delivery of VEGFA via nonintegrative and safe nucleoside-modified mRNA encapsulated into lipid nanoparticles (mRNA-LNPs) in acutely or chronically injured mouse livers induces robust BEC-to-hepatocyte conversion and elimination of steatosis and fibrosis. In human and murine diseased livers, we further identified VEGFA-receptor KDR-expressing BECs associated with KDR-expressing cell-derived hepatocytes. This work defines KDR-expressing cells, most likely being BECs, as facultative progenitors. This study reveals unexpected therapeutic benefits of VEGFA delivered via nucleoside-modified mRNA-LNP, whose safety is widely validated with COVID-19 vaccines, for harnessing BEC-driven repair to potentially treat liver diseases.


Assuntos
Hepatopatias , Peixe-Zebra , Animais , Camundongos , Humanos , RNA Mensageiro/genética , Vacinas contra COVID-19 , Nucleosídeos , Hepatócitos , Fígado , Células Epiteliais , Hepatopatias/patologia , Fibrose , Regeneração Hepática , Fator A de Crescimento do Endotélio Vascular/genética
2.
Hepatology ; 75(2): 322-337, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34435364

RESUMO

BACKGROUND AND AIMS: In patients with acute liver failure (ALF) who suffer from massive hepatocyte loss, liver progenitor cells (LPCs) take over key hepatocyte functions, which ultimately determines survival. This study investigated how the expression of hepatocyte nuclear factor 4α (HNF4α), its regulators, and targets in LPCs determines clinical outcome of patients with ALF. APPROACH AND RESULTS: Clinicopathological associations were scrutinized in 19 patients with ALF (9 recovered and 10 receiving liver transplantation). Regulatory mechanisms between follistatin, activin, HNF4α, and coagulation factor expression in LPC were investigated in vitro and in metronidazole-treated zebrafish. A prospective clinical study followed up 186 patients with cirrhosis for 80 months to observe the relevance of follistatin levels in prevalence and mortality of acute-on-chronic liver failure. Recovered patients with ALF robustly express HNF4α in either LPCs or remaining hepatocytes. As in hepatocytes, HNF4α controls the expression of coagulation factors by binding to their promoters in LPC. HNF4α expression in LPCs requires the forkhead box protein H1-Sma and Mad homolog 2/3/4 transcription factor complex, which is promoted by the TGF-ß superfamily member activin. Activin signaling in LPCs is negatively regulated by follistatin, a hepatocyte-derived hormone controlled by insulin and glucagon. In contrast to patients requiring liver transplantation, recovered patients demonstrate a normal activin/follistatin ratio, robust abundance of the activin effectors phosphorylated Sma and Mad homolog 2 and HNF4α in LPCs, leading to significantly improved coagulation function. A follow-up study indicated that serum follistatin levels could predict the incidence and mortality of acute-on-chronic liver failure. CONCLUSIONS: These results highlight a crucial role of the follistatin-controlled activin-HNF4α-coagulation axis in determining the clinical outcome of massive hepatocyte loss-induced ALF. The effects of insulin and glucagon on follistatin suggest a key role of the systemic metabolic state in ALF.


Assuntos
Ativinas/genética , Folistatina/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , Falência Hepática Aguda/metabolismo , Ativinas/metabolismo , Insuficiência Hepática Crônica Agudizada/sangue , Adulto , Idoso , Animais , Coagulação Sanguínea , Linhagem Celular , Fator V/genética , Feminino , Folistatina/sangue , Seguimentos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Hepatócitos/metabolismo , Humanos , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/patologia , Falência Hepática Aguda/cirurgia , Regeneração Hepática , Transplante de Fígado , Masculino , Metronidazol , Camundongos , Pessoa de Meia-Idade , Prognóstico , Regiões Promotoras Genéticas , Estudos Prospectivos , Protrombina/genética , Transdução de Sinais , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/genética , Proteína Smad3/metabolismo , Proteína Smad4/genética , Células-Tronco/metabolismo , Fator de Crescimento Transformador beta1/genética , Peixe-Zebra
3.
Hepatology ; 74(1): 397-410, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33314176

RESUMO

BACKGROUND AND AIMS: Following mild liver injury, pre-existing hepatocytes replicate. However, if hepatocyte proliferation is compromised, such as in chronic liver diseases, biliary epithelial cells (BECs) contribute to hepatocytes through liver progenitor cells (LPCs), thereby restoring hepatic mass and function. Recently, augmenting innate BEC-driven liver regeneration has garnered attention as an alternative to liver transplantation, the only reliable treatment for patients with end-stage liver diseases. Despite this attention, the molecular basis of BEC-driven liver regeneration remains poorly understood. APPROACH AND RESULTS: By performing a chemical screen with the zebrafish hepatocyte ablation model, in which BECs robustly contribute to hepatocytes, we identified farnesoid X receptor (FXR) agonists as inhibitors of BEC-driven liver regeneration. Here we show that FXR activation blocks the process through the FXR-PTEN (phosphatase and tensin homolog)-PI3K (phosphoinositide 3-kinase)-AKT-mTOR (mammalian target of rapamycin) axis. We found that FXR activation blocked LPC-to-hepatocyte differentiation, but not BEC-to-LPC dedifferentiation. FXR activation also suppressed LPC proliferation and increased its death. These defects were rescued by suppressing PTEN activity with its chemical inhibitor and ptena/b mutants, indicating PTEN as a critical downstream mediator of FXR signaling in BEC-driven liver regeneration. Consistent with the role of PTEN in inhibiting the PI3K-AKT-mTOR pathway, FXR activation reduced the expression of pS6, a marker of mTORC1 activation, in LPCs of regenerating livers. Importantly, suppressing PI3K and mTORC1 activities with their chemical inhibitors blocked BEC-driven liver regeneration, as did FXR activation. CONCLUSIONS: FXR activation impairs BEC-driven liver regeneration by enhancing PTEN activity; the PI3K-AKT-mTOR pathway controls the regeneration process. Given the clinical trials and use of FXR agonists for multiple liver diseases due to their beneficial effects on steatosis and fibrosis, the detrimental effects of FXR activation on LPCs suggest a rather personalized use of the agonists in the clinic.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Regeneração Hepática/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Células-Tronco/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Sistema Biliar/citologia , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Fígado/efeitos dos fármacos , Fígado/fisiologia , Mutação , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas Fosfatases/antagonistas & inibidores , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Células-Tronco/fisiologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Front Immunol ; 8: 1344, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163466

RESUMO

The increased incidence of Crohn's disease in smokers has been recently reported, suggesting a strong association of cigarette smoke (CS) with colitis. However, the mechanism of the action of CS on colitis has not yet been explored. Here, we demonstrate that CS exposure is sufficient to induce colitis in mice. Interestingly, the colitis is mainly mediated by Th1, but not Th17, responses. CD4+ T-cell depletion or T-bet/IFN-γ deficiency protects against the development of colitis induced by CS. Additionally, IFN-γ-producing CD4+ T cells play a substantial role in CS-induced colitis. The adoptive transfer (AT) of effector T cells from CS-exposed WT mice into colitis-prone mice caused these mice to develop colitis, while the AT of effector T cells from IFN-γ knock-out mice did not. These findings have implications for broadening our understanding of CS-induced pathology and for the development of novel therapeutic strategies to treat Crohn's disease.

5.
Photomed Laser Surg ; 33(1): 3-8, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25549163

RESUMO

OBJECTIVE: The purpose of the present study was to test the usefulness of 457 nm diode-pumped solid state (DPSS) laser as a light source to cure composite resins. MATERIALS AND METHODS: Five different composite resins were light cured using three different light-curing units (LCUs): a DPSS 457 nm laser (LAS), a light-emitting diode (LED), and quartz-tungsten-halogen (QTH) units. The light intensity of LAS was 560 mW/cm(2), whereas LED and QTH LCUs was ∼900 mW/cm(2). The degree of polymerization was tested by evaluating microhardness, cross-link density, and polymerization shrinkage. RESULTS: Before water immersion, the microhardness of laser-treated specimens ranged from 40.8 to 84.7 HV and from 31.7 to 79.0 HV on the top and bottom surfaces, respectively, and these values were 3.3-23.2% and 2.9-31.1% lower than the highest microhardness obtained using LED or QTH LCUs. Also, laser-treated specimens had lower top and bottom microhardnesses than the other LCUs treated specimens by 2.4-19.4% and 1.4-27.8%, respectively. After ethanol immersion for 24 h, the microhardness of laser-treated specimens ranged from 20.3 to 63.2 HV on top and bottom surfaces, but from 24.9 to 71.5 HV when specimens were cured using the other LCUs. Polymerization shrinkage was 9.8-14.7 µm for laser-treated specimens, and these were significantly similar or lower (10.2-16.0 µm) than those obtained using the other LCUs. CONCLUSIONS: The results may suggest that the 457 nm DPSS laser can be used as a light source for light-curing dental resin composites.


Assuntos
Resinas Compostas/química , Lâmpadas de Polimerização Dentária , Lasers de Estado Sólido , Dureza , Teste de Materiais , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA