Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38068607

RESUMO

Ginkgo biloba L. stands as one of the oldest living tree species, exhibiting a diverse range of biological activities, including antioxidant, neuroprotective, anti-inflammatory, and cardiovascular activities. As part of our ongoing discovery of novel bioactive components from natural sources, we directed our focus toward the investigation of potential bioactive compounds from G. biloba fruit. The profiles of its chemical compounds were examined using a Global Natural Products Social (GNPS)-based molecular networking analysis. Guided by this, we successfully isolated and characterized 11 compounds from G. biloba fruit, including (E)-coniferin (1), syringin (2), 4-hydroxybenzoic acid 4-O-ß-D-glucopyranoside (3), vanillic acid 4-O-ß-D-glucopyranoside (4), syringic acid 4-O-ß-D-glucopyranoside (5), (E)-ferulic acid 4-O-ß-D-glucoside (6), (E)-sinapic acid 4-O-ß-D-glucopyranoside (7), (1'R,2'S,5'R,8'S,2'Z,4'E)-dihydrophaseic acid 3'-O-ß-D-glucopyranoside (8), eucomic acid (9), rutin (10), and laricitrin 3-rutinoside (11). The structural identification was validated through a comprehensive analysis involving nuclear magnetic resonance (NMR) spectroscopic data and LC/MS analyses. All isolated compounds were evaluated using an E-screen assay for their estrogen-like effects in MCF-7 cells. As a result, compounds 2, 3, 4, 8, and 9 promoted cell proliferation in MCF-7 cells, and these effects were mitigated by the ER antagonist, ICI 182,780. In particular, cell proliferation increased most significantly to 140.9 ± 6.5% after treatment with 100 µM of compound 2. The mechanism underlying the estrogen-like effect of syringin (2) was evaluated using a Western blot analysis to determine the expression of estrogen receptor α (ERα). We found that syringin (2) induced an increase in the phosphorylation of ERα. Overall, these experimental results suggest that syringin (2) can potentially aid the control of estrogenic activity during menopause.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37895949

RESUMO

Equisetum arvense L. (Equisetaceae), widely known as 'horsetail', is a perennial plant found extensively across Asia. Extracts of E. arvense have been used in traditional medicine, particularly for the treatment of inflammatory disorders. This study aimed to determine the phytochemical compounds in E. arvense ethanolic extract and their anti-inflammatory properties. Subsequently, we isolated and identified nine secondary metabolites, including kaempferol 3,7-di-O-ß-D-glucopyranoside (1), icariside B2 (2), (Z)-3-hexenyl ß-D-glucopyranoside (3), luteolin 5-O-ß-D-glucopyranoside (4), 4-O-ß-D-glucopyranosyl caffeic acid (5), clemastanin B (6), 4-O-caffeoylshikimic acid (7), (7S,8S)-threo-7,9,9'-trihydroxy-3,3'-dimethoxy-8-O-4'-neolignan-4-O-ß-D-glucopyranoside (8), and 3-O-caffeoylshikimic acid (9). The chemical structures of the isolated compounds (1-9) were elucidated using HR-ESI-MS data, NMR spectra, and ECD data. Next, the anti-inflammatory effects of the isolates were evaluated in tumor necrosis factor (TNF)α/interferon (IFN)γ-induced HaCaT, a human keratinocyte cell line. Among the isolates, compound 3 showed the highest inhibitory effect on the expression of pro-inflammatory chemokines, followed by compounds 6 and 8. Correspondingly, the preceding isolates inhibited TNFα/IFNγ-induced activation of pro-inflammatory transcription factors, signal transducer and activator of transcription 1, and nuclear factor-κB. Collectively, E. arvense could be employed for the development of prophylactic or therapeutic agents for improving dermatitis.

3.
Arch Pharm Res ; 28(8): 923-9, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16178418

RESUMO

Methanol extracts of domestic plants of Korea were evaluated as a potential inhibitor of neutral pH optimum and membrane-associated 60 kDa sphingomyelinase (N-SMase) activity. In this study, we partially purified N-SMase from bovine brain membranes using ammonium sulfate. It was purified approximately 163-fold by the sequential use of DE52, Butyl-Toyopearl, DEAE-Cellulose, and Phenyl-5PW column chromatographies. The purified N-SMase activity was assayed in the presence of the plant extracts of three hundreds species. Based on the in vitro assay, three plant extracts significantly inhibited the N-SMase activity in a time- and concentration-dependent manner. To further examine the inhibitory pattern, a Dixon plot was constructed for each of the plant extracts. The extracts of Abies nephrolepis, Acer tegmentosum, and Ginkgo biloba revealed a competitive inhibition with the inhibition constant (Ki) of 11.9 microg/ mL, 9.4 microg/mL, and 12.9 microg/mL, respectively. These extracts also inhibited in a dose-dependent manner the production of ceramide induced by serum deprivation in human neuroblastoma cell line SH-SY5Y.


Assuntos
Abies , Acer , Encéfalo/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Ginkgo biloba , Proteínas de Membrana/antagonistas & inibidores , Extratos Vegetais/farmacologia , Esfingomielina Fosfodiesterase/antagonistas & inibidores , Animais , Ligação Competitiva , Encéfalo/enzimologia , Bovinos , Linhagem Celular Tumoral , Ceramidas/biossíntese , Meios de Cultura Livres de Soro/farmacologia , Relação Dose-Resposta a Droga , Humanos , Coreia (Geográfico) , Magnésio , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Casca de Planta , Esfingomielina Fosfodiesterase/isolamento & purificação , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielinas/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA