Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 11(1): 255, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32586410

RESUMO

BACKGROUND: Clinical use of mesenchymal stem cells (MSCs) requires a uniform cell population, and their harvesting is invasive and produces a limited number of cells. Human embryonic stem cell-derived MSCs (hESC-MSCs) can differentiate into three germ layers and possess immunosuppressive effects in vitro. Anticancer treatment is a well-known risk factor for premature ovarian failure (POF). In this study, we investigated the effect of hESC-MSC on recovery of ovarian function in cisplatin-induced POF in mice. METHODS: Female mice received intraperitoneal cisplatin for 10 days. On day 12, CHA15-derived hESC-MSCs were transplanted into the mice by tail vein injection. An injection of PBS served as the negative control. Ovaries were removed 28 days after transplantation for assessment of ovarian histology, immunostaining, and fertility testing by superovulation and in vitro fertilization. hESC-MSC transplantation into mice with cisplatin-induced damage restored body weight and ovary size. RESULTS: Mean primary and primordial follicle counts in the hESC-MSC group were significantly improved compared to the PBS group (P < 0.05), and counts of zona pellucida remnants, an apoptotic sign in ovarian follicles, were significantly reduced (P < 0.05). TUNEL assays and cleaved PARP immunostaining indicated apoptosis, which led to loss of ovarian stromal cells in negative control mice, while Ki-67 was higher in the hESC-MSC group and in non-cisplatin-treated controls than in the PBS group. Ovulation was reduced in the PBS group but recovered significantly in the hESC-MSC group. Rates of blastocyst formation from ovulated eggs and live births per mouse also recovered significantly in the hESC-MSC group. CONCLUSIONS: hESC-MSC restored structure and function in the cisplatin-damaged ovary. Our study provides new insights into the great clinical potential of human hESC-MSC in treating POF.


Assuntos
Células-Tronco Embrionárias Humanas , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Animais , Cisplatino/toxicidade , Feminino , Humanos , Camundongos , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/terapia
2.
Cell Prolif ; 52(3): e12597, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30896075

RESUMO

OBJECTIVES: Because primary mesenchymal progenitor cells (adult-MPCs) have various functions that depend on the tissue origin and donor, de novo MPCs from human pluripotent stem cells (hPSCs) would be required in regenerative medicine. However, the characteristics and function of MPCs derived from reprogrammed hPSCs have not been well studied. Thus, we show that functional MPCs can be successfully established from a single cell-derived clonal expansion following MPC derivation from somatic cell nuclear transfer-derived (SCNT)-hPSCs, and these cells can serve as therapeutic contributors in an animal model of Asherman's syndrome (AS). MATERIALS AND METHODS: We developed single cell-derived clonal expansion following MPC derivation from SCNT-hPSCs to offer a pure population and a higher biological activity. Additionally, we investigated the therapeutic effects of SCNT-hPSC-MPCs in model mice of Asherman's syndrome (AS), which is characterized by synechiae or fibrosis with endometrial injury. RESULTS: Their humoral effects in proliferating host cells encouraged angiogenesis and decreased pro-inflammatory factors via a host-dependent mechanism, resulting in reduction in AS. We also addressed that cellular activities such as the cell proliferation and population doubling of SCNT-hPSC-MPCs resemble those of human embryonic stem cell-derived MPCs (hESC-MPCs) and are much higher than those of adult-MPCs. CONCLUSIONS: Somatic cell nuclear transfer-derived-hPSCs-MPCs could be an advanced therapeutic strategy for specific diseases in the field of regenerative medicine.


Assuntos
Ginatresia/terapia , Transplante de Células-Tronco Mesenquimais , Animais , Diferenciação Celular , Proliferação de Células , Técnicas de Reprogramação Celular , Células Clonais/transplante , Modelos Animais de Doenças , Endométrio/patologia , Endométrio/fisiopatologia , Feminino , Ginatresia/patologia , Ginatresia/fisiopatologia , Humanos , Camundongos , Camundongos Endogâmicos ICR , Neovascularização Fisiológica , Técnicas de Transferência Nuclear , Células-Tronco Pluripotentes/transplante , Medicina Regenerativa , Útero/patologia , Útero/fisiopatologia
3.
J Vet Sci ; 15(4): 519-28, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24962410

RESUMO

The present study was conducted to develop an effective method for establishment of porcine parthenogenetic embryonic stem cells (ppESCs) from parthenogenetically activated oocyte-derived blastocysts. The addition of 10% fetal bovine serum (FBS) to the medium on the 3rd day of oocyte culturing improved the development of blastocysts, attachment of inner cell masses (ICMs) onto feeder cells, and formation of primitive ppESC colonies. ICM attachment was further enhanced by basic fibroblast growth factor, stem cell factor, and leukemia inhibitory factor. From these attached ICMs, seven ppESC lines were established. ppESC pluripotency was verified by strong enzymatic alkaline phosphatase activity and the expression of pluripotent markers OCT3/4, Nanog, and SSEA4. Moreover, the ppESCs were induced to form an embryoid body and teratoma. Differentiation into three germ layers (ectoderm, mesoderm, and endoderm) was confirmed by the expression of specific markers for the layers and histological analysis. In conclusion, data from the present study suggested that our modified culture conditions using FBS and cytokines are highly useful for improving the generation of pluripotent ppESCs.


Assuntos
Blastocisto/citologia , Técnicas de Cultura de Células/veterinária , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes/citologia , Suínos/fisiologia , Animais , Citocinas/metabolismo , Partenogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA