Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cancer Commun (Lond) ; 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073023

RESUMO

BACKGROUND: Increased Galectin 3-binding protein (LGALS3BP) serum levels have been used to assess hepatic fibrosis stages and the severity of hepatocellular carcinoma (HCC). Considering the crucial role of transforming growth factor-ß1 (TGF-ß1) in the emergence of these diseases, the present study tested the hypothesis that LGALS3BP regulates the TGF-ß1 signaling pathway. METHODS: The expression levels of LGALS3BP and TGFB1 were analyzed in patients with metabolic dysfunction-associated steatohepatitis (MASH) and HCC. Multiple omics techniques, such as RNA-sequencing, transposase-accessible chromatin-sequencing assay, and liquid chromatography-tandem mass spectrometry proteomics, were used to identify the regulatory mechanisms for the LGALS3BP-TGF-ß1 axis. The effects of altered TGF-ß1 signaling by LGALS3BP were investigated in conditional LGALS3BP-knockin and LGALS3BP-knockout mice. RESULTS: In patients with MASH and HCC, the levels of LGALS3BP and TGFB1 exhibited positive correlations. Stimulation of LGALS3BP by the inflammatory cytokine interferon α in HCC cells or ectopic overexpression of LGALS3BP in hepatocytes promoted the expression levels of TGFB1. Aggravated fibrosis was observed in the livers of hepatocyte-specific LGALS3BP-knockin mice, with increased TGFB1 levels. LGALS3BP directly bound to and assembled integrin αV, an integral mediator required for releasing active TGF-ß1 from extracellular latent complex with the rearranged F-actin cytoskeleton. The released TGF-ß1 activated JunB transcription factor, which in turn promoted the TGF-ß1 positive feedback loop. LGALS3BP deletion in the hepatocytes downregulated TGF-ß1 signaling and CCl4 induced fibrosis. Moreover, LGALS3BP depletion hindered hepatocarcinogenesis by limiting the availability of fibrogenic TGF-ß1. CONCLUSION: LGALS3BP plays a crucial role in hepatic fibrosis and carcinogenesis by controlling the TGF-ß1 signaling pathway, making it a promising therapeutic target in TGF-ß1-related diseases.

2.
Clin Proteomics ; 21(1): 52, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075362

RESUMO

BACKGROUND: Tumor recurrence and metastatic progression remains the leading cause for breast cancer related mortalities. However, the proteomes of patient- matched primary breast cancer (BC) and metastatic lesions have not yet been identified, due to the lack of clinically annotated longitudinal samples. In this study, we evaluated the global-proteomic landscape of BC patients with and without distant metastasis as well as compared the proteome of distant metastatic disease with its corresponding primary BC, within the same patient. METHODS: We performed mass spectrometry-based proteome profiling of 73 serum samples from 51 BC patients. Among the 51 patients with BC, 29 remained metastasis-free (henceforth called non-progressors), and 22 developed metastases (henceforth called progressors). For the 22 progressors, we obtained two samples: one collected within a year of diagnosis, and the other collected within a year before the diagnosis of metastatic disease. MS data were analyzed using intensity-based absolute quantification and normalized before differential expression analysis. Significantly differentially expressed proteins (DEPs; absolute fold-change ≥ 1.5, P-value < 0.05 and 30% abundance per clinical group) were subjected to pathway analyses. RESULTS: We identified 967 proteins among 73 serum samples from patients with BC. Among these, 39 proteins were altered in serum samples at diagnosis, between progressors and non-progressors. Among these, 4 proteins were further altered when the progressors developed distant metastasis. In addition, within progressors, 20 proteins were altered in serum collected at diagnosis versus at the onset of metastasis. Pathway analysis showed that these proteins encoded pathways that describe metastasis, including epithelial-mesenchymal transition and focal adhesion that are hallmarks of metastatic cascade. CONCLUSIONS: Our results highlight the importance of examining matched samples from distant metastasis with primary BC samples collected at diagnosis to unravel subset of proteins that could be involved in BC progression in serum. This study sets the foundation for additional future investigations that could position these proteins as non-invasive markers for clinically monitoring breast cancer progression in patients.

3.
bioRxiv ; 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38766247

RESUMO

PCIF1 (Phosphorylated CTD-Interacting Factor 1) is the mRNA (2'-O-methyladenosine-N(6)-)-methyltransferase that catalyzes the formation of cap-adjacent N6,2'-O-dimethyladenosine (m6Am) by methylating adenosines at the first transcribed position of capped mRNAs. While previous studies assumed that PCIF1 was nuclear, cell fractionation and immunofluorescence both show that a population of PCIF1 is localized to the cytoplasm. Further, PCIF1 redistributes to stress granules upon oxidative stress. Immunoprecipitation studies with stressed cells show that PCIF1 also physically interacts with G3BP and other stress granule components. In addition, PCIF1 behaves as a stress granule component as it disassociates from stress granules upon recovery from stress. Overexpressing full-length PCIF1 also inhibits stress granule formation, while knocking out PCIF1 slows stress granule disassembly. Next, our enhanced crosslinking and immunoprecipitation (eCLIP) data show that PCIF1 binds mRNAs in their coding sequences rather than cap-proximal regions. Further PCIF1's association with mRNAs increased upon NaAsO2 stress. In contrast to eCLIP data, ChIP-Seq experiments show that PCIF1 is predominantly associated with transcription start sites rather than gene bodies, indicating that PCIF1's association with mature mRNA is not co-transcriptional. Collectively, our data suggest that PCIF1 has cytoplasmic RNA surveillance role(s) independent of transcription-associated cap-adjacent mRNA modification, particularly during the stress response.

4.
Res Sq ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38659962

RESUMO

Multi-platform mutational, proteomic, and metabolomic spatial mapping was used on the whole-organ scale to identify the molecular evolution of bladder cancer from mucosal field effects. We identified complex proteomic and metabolomic dysregulations in microscopically normal areas of bladder mucosa adjacent to dysplasia and carcinoma in situ. The mutational landscape developed in a background of complex defects of protein homeostasis which included dysregulated nucleocytoplasmic transport, splicesome, ribosome biogenesis, and peroxisome. These changes were combined with altered urothelial differentiation which involved lipid metabolism and protein degradations controlled by PPAR. The complex alterations of proteome were accompanied by dysregulation of gluco-lipid energy-related metabolism. The analysis of mutational landscape identified three types of mutations based on their geographic distribution and variant allele frequencies. The most common were low frequency α mutations restricted to individual mucosal samples. The two other groups of mutations were associated with clonal expansion. The first of this group referred to as ß mutations occurred at low frequencies across the mucosa. The second of this group called γ mutations increased in frequency with disease progression. Modeling of the mutations revealed that carcinogenesis may span nearly 30 years and can be divided into dormant and progressive phases. The α mutations developed gradually in the dormant phase. The progressive phase lasted approximately five years and was signified by the advent of ß mutations, but it was driven by γ mutations which developed during the last 2-3 years of disease progression to invasive cancer. Our study indicates that the understanding of complex alterations involving mucosal microenvironment initiating bladder carcinogenesis can be inferred from the multi-platform whole-organ mapping.

5.
Elife ; 132024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240316

RESUMO

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMP-activated protein kinase and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin-positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk, and organism longevity.


Assuntos
Lisossomos , Proteômica , Lisossomos/metabolismo , Membranas Intracelulares/metabolismo , Proteoma/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA