Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Ethnopharmacol ; 333: 118398, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38823660

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Wikstroemia has been extensively utilized in traditional Chinese medicine (TCM) for the management of conditions such as coughs, edema, arthritis, and bronchitis. Studies have indicated that the crude extracts of Wikstroemia exhibit anti-inflammatory, anti-allergy, anti-aging, skin psoriasis, anti-cancer, and antiviral properties. In addition, these extracts are known to contain bioactive substances, including flavonoids, coumarins, and lignans. However, few studies have investigated the anti-inflammatory or anti-allergic activities of Wikstroemia trichotoma (Thunb.) Makino against atopic dermatitis (AD). AIM OF THE STUDY: The study aimed to explore the potential of a 95% ethanol extract of W. trichotoma (WTE) on the dysfunction of skin barrier and immune system, which are primary symptoms of AD, in 2,4-dinitrochlorobenzene (DNCB)-induced SKH-1 hairless mice and phorbol 12-myristate 13-acetate (PMA)/ionomycin or immunoglobulin E (IgE) + 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulated rat basophilic leukemia cell line (RBL-2H3). Furthermore, we sought to identify the chemical contents of WTE using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-PDA). MATERIALS AND METHODS: An in vitro study was conducted using RBL-2H3 cells stimulated with PMA/ionomycin or IgE + DNP-BSA to assess the inhibitory effects of WTE on mast cell degranulation and interleukin-4 (IL-4) mRNA expression levels. For the in vivo study, AD was induced in SKH-1 hairless mice by applying 1% DNCB to the dorsal skin daily for 7 days. Subsequently, 0.1% DNCB solution was applied on alternate days, and mice were orally administered WTE (at 30 or 100 mg/kg/day) dissolved in 0.5% carboxymethyl cellulose (CMC) daily for 2 weeks. Transepidermal water loss (TEWL), skin hydration, skin pH, and total serum IgE levels were measured. RESULTS: In DNCB-stimulated SKH-1 hairless mice, WTE administration significantly improved AD symptoms and ameliorated dorsal skin inflammation. Oral administration of WTE led to a significant decrease in skin thickness, infiltration of mast cells, and level of total serum IgE, thus restoring skin barrier function in the DNCB-induced skin lesions. In addition, WTE inhibited ß-hexosaminidase release and reduced IL-4 mRNA levels in RBL-2H3 cells. Chemical profile analysis of WTE confirmed the presence of three phenolic compounds, viz. chlorogenic acid, miconioside B, and matteucinol-7-O-ß-apiofuranosyl (1 â†’ 6)-ß-glucopyranoside. CONCLUSIONS: WTE ameliorates AD symptoms by modulating in the skin barrier and immune system dysfunction. This suggests that W. trichotoma extract may offer therapeutic benefits for managing AD.

2.
Nat Commun ; 15(1): 2779, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555350

RESUMO

Adipose tissue (AT) adapts to overnutrition in a complex process, wherein specialized immune cells remove and replace dysfunctional and stressed adipocytes with new fat cells. Among immune cells recruited to AT, lipid-associated macrophages (LAMs) have emerged as key players in obesity and in diseases involving lipid stress and inflammation. Here, we show that LAMs selectively express transmembrane 4 L six family member 19 (TM4SF19), a lysosomal protein that represses acidification through its interaction with Vacuolar-ATPase. Inactivation of TM4SF19 elevates lysosomal acidification and accelerates the clearance of dying/dead adipocytes in vitro and in vivo. TM4SF19 deletion reduces the LAM accumulation and increases the proportion of restorative macrophages in AT of male mice fed a high-fat diet. Importantly, male mice lacking TM4SF19 adapt to high-fat feeding through adipocyte hyperplasia, rather than hypertrophy. This adaptation significantly improves local and systemic insulin sensitivity, and energy expenditure, offering a potential avenue to combat obesity-related metabolic dysfunction.


Assuntos
Resistência à Insulina , Obesidade , Masculino , Camundongos , Animais , Obesidade/complicações , Obesidade/genética , Tecido Adiposo/metabolismo , Inflamação/metabolismo , Dieta Hiperlipídica/efeitos adversos , Lisossomos/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL
3.
Food Chem Toxicol ; 187: 114624, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38556155

RESUMO

Diclofenac, a widely used non-steroidal anti-inflammatory drug, can cause liver damage via its metabolic activation by hepatic CYP450s and UGT2B7. Fasting can affect drug-induced liver injury by modulating the hepatic metabolism, but its influence on diclofenac hepatotoxicity is unknown. Thus, we investigated diclofenac-induced liver damage after fasting in mice, and the cellular events were examined. Male ICR mice fasted for 16 h showed the elevation of CYP3A11, but the decreases of UGT2B7, glutathione (GSH), and GSH S-transferase-µ/-π levels in the livers. Diclofenac (200 mg/kg) injection into the mice after 16-h fasting caused more significant liver damage compared to that in the diclofenac-treated fed mice, as shown by the higher serum ALT and AST activities. Diclofenac-promoted hepatic oxidative stress (oxidized proteins, 4-hydroxynonenal, and malondialdehyde), endoplasmic reticulum (ER) stress (BiP, ATF6, and CHOP), and apoptosis (cleaved caspase-3 and cleaved PARP) were enhanced by fasting. Autophagic degradation was inhibited in the diclofenac-treated fasting mice compared to that of the corresponding fed mice. The results suggest that fasting can make the liver more susceptible to diclofenac toxicity by lowering GSH-mediated detoxification; increased oxidative/ER stresses and apoptosis and suppressed autophagic degradation may be the cellular mechanisms of the aggravated diclofenac hepatotoxicity under fasting conditions.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Camundongos , Masculino , Animais , Diclofenaco/toxicidade , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos ICR , Fígado/metabolismo , Estresse do Retículo Endoplasmático , Apoptose , Glutationa/metabolismo , Estresse Oxidativo , Jejum , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
4.
Curr Res Food Sci ; 8: 100663, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38222825

RESUMO

Betaine, a compound found in plants and sea foods, is known to be beneficial against non-alcoholic fatty liver disease (NAFLD), but its hepatoprotective and anti-steatogenic mechanisms have been not fully understood. In the present study, we investigated the mechanisms underlying betaine-mediated alleviation of NAFLD induced by a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) in mice, with special focus on the contribution of betaine-stimulated autophagy to NAFLD prevention. Male ICR mice were fed a CDAHFD with or without betaine (0.2-1% in drinking water) for 1 week. Betaine ameliorated the CDAHFD-induced fatty liver by restoring sulfur amino acid (SAA)-related metabolites, such as S-adenosylmethionine and homocysteine, and the phosphorylation of AMPK and ACC. In addition, it reduced the CDAHFD-induced ER stress (BiP, ATF6, and CHOP) and apoptosis (Bax, cleaved caspase-3, and cleaved PARP); however, it induced autophagy (LC3II/I and p62) which was downregulated by CDAHFD. To determine the role of autophagy in the improvement of NAFLD, chloroquine (CQ), an autophagy inhibitor, was injected into the mice fed a CDAHFD and betaine (0.5 % in drinking water). CQ did not affect SAA metabolism but reduced the beneficial effects of betaine as shown by the increases of hepatic lipids, ER stress, and apoptosis. Notably, the betaine-induced improvements in lipid metabolism determined by protein levels of p-AMPK, p-ACC, PPARα, and ACS1, were reversed by CQ. Thus, the results of this study suggest that the activation of autophagy is an important upstream mechanism for the inhibition of steatosis, ER stress, and apoptosis by betaine in NAFLD.

5.
Biomol Ther (Seoul) ; 32(1): 94-103, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38148555

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 µg/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.

6.
BMC Cancer ; 23(1): 843, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684602

RESUMO

BACKGROUND: Non-coding microRNAs (miRNAs) play critical roles in tumor progression and hold great promise as therapeutic agents for multiple cancers. MicroRNA 29a (miR-29a) is a tumor suppressor miRNA that inhibits cancer cell growth and tumor progression in non-small cell lung cancer. Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6), which plays an important role in lung cancer progression, has been identified as a target of miR-29a. Here, we evaluated the therapeutic efficacy of a peptide vector capable of delivering miR-29a intracellularly using the acidic tumor microenvironment in a lung adenocarcinoma xenograft mouse model. METHODS: A miRNA delivery vector was constructed by tethering the peptide nucleic acid form of miR-29a to a peptide with a low pH-induced transmembrane structure (pHLIP) to enable transport of the miRNAs across the plasma membrane. Tumor suppressive effects of pHLIP-miR29a on lung adenocarcinoma development in vivo were assessed using a BALB/c xenograft model injected with A549 cells. RESULTS: Incubation of A549 cells with pHLIP-miR-29a at an acidic pH downregulated endogenous CEACAM6 expression and reduced cell viability. Intravenous injection of the mice with pHLIP-miR-29a inhibited tumor growth by up to 18.1%. Intraperitoneal injection of cisplatin reduced tumor volume by 29.9%. Combined pHLIP-miR-29a + cisplatin treatment had an additive effect, reducing tumor volume up to 39.7%. CONCLUSIONS: Delivery of miR-29a to lung adenocarcinoma cells using a pHLIP-mediated method has therapeutic potential as a unique cancer treatment approach.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Cisplatino/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Moléculas de Adesão Celular/genética , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Modelos Animais de Doenças , Microambiente Tumoral , Antígenos CD/genética , Proteínas Ligadas por GPI
7.
Environ Res ; 231(Pt 2): 116172, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201704

RESUMO

The current study aimed to investigate the toxicity of positively charged polyhexamethylene guanidine (PHMG) polymer and its complexation with different anionic natural polymers such as k-carrageenan (kCG), chondroitin sulfate (CS), sodium alginate (Alg.Na), polystyrene sulfonate sodium (PSS.Na) and hydrolyzed pectin (HP). The physicochemical properties of the synthesized PHMG and its combination with anionic polyelectrolyte complexes (PECs) namely PHMG:PECs were characterized using zeta potential, XPS, FTIR, and TG analysis. Furthermore, cytotoxic behavior of the PHMG and PHMG:PECs, respectively, were evaluated using human liver cancer cell line (HepG2). The study results revealed that the PHMG alone had slightly higher cytotoxicity to the HepG2 cells than the prepared polyelectrolyte complexes such as PHMG:PECs. The PHMG:PECs showed a significant reduction of cytotoxicity to the HepG2 cells than the pristine PHMG alone. A reduction of PHMG toxicity was observed may be due to the facile formation of complexation between the positively charged PHMG and negatively charged anionic natural polymers such as kCG, CS, Alg. Na, PSS.Na and HP, respectively, via charge balance or neutralization. The experimental results indicate that the suggested method might significantly lower PHMG toxicity while improving biocompatibility.


Assuntos
Desinfetantes , Humanos , Guanidina , Polieletrólitos/toxicidade , Guanidinas/toxicidade , Guanidinas/química , Linhagem Celular
8.
Mol Immunol ; 156: 98-110, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36921490

RESUMO

Chitinase 3-like-1 protein (CHI3L1) is involved in various infectious diseases, especially sepsis. Aberrant CHI3L1 expression potentially plays a critical role in chronic inflammation because a considerable number of macrophages are associated with immune/inflammatory diseases. In this study, we examined the effect of CHI3L1 on hepatic sepsis injury using a lipopolysaccharide (LPS)-induced model. LPS-treated CHI3L1 knockout (KO) mice exhibited a higher survival rate than LPS-treated CHI3L1 wild-type (WT) mice. In addition, hepatic injury-related enzyme levels (aspartate transaminase, alanine transaminase, and lactate dehydrogenase) decreased in CHI3L1 KO mice sera, suggesting attenuated LPS-induced septic liver damage in CHI3L1 KO mice. A greater reduction in the mRNA and protein expressions of M2 polarization markers, such as MRC1, ARG1, IL-10, and IL-4, was observed in LPS-induced CHI3L1 KO mice livers than in LPS-induced WT mice livers. Nonetheless, no change in the mRNA and protein expressions of M1 polarization markers, such as INOS, CD86, TNF-α, and IL6, was noted in LPS-induced CHI3L1 KO mice livers compared with those in LPS-induced WT and KO mice. Similar to the in vivo scenario, liver CHI3L1 depletion in LPS-treated HEP3B cells significantly decreased M2 polarization marker protein expression. However, M1 polarization marker protein expression did not differ significantly. These results suggest that CHI3L1 depletion decreases M2 macrophage polarization, and this effect is potentially associated with the alleviation of liver sepsis in CHI3L1 KO mice.


Assuntos
Quitinases , Sepse , Animais , Camundongos , Quitinases/metabolismo , Lipopolissacarídeos/toxicidade , Lipopolissacarídeos/metabolismo , Fígado/metabolismo , Macrófagos/metabolismo , RNA Mensageiro/metabolismo , Sepse/metabolismo
9.
Molecules ; 28(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36771140

RESUMO

Liver metabolic disorders and oxidative stress are crucial factors in the development of nonalcoholic fatty liver disease (NAFLD); however, treatment strategies to combat NAFLD remain poorly established, presenting an important challenge that needs to be addressed. Herein, we aimed to examine the effect of isoquercitrin on lipid accumulation induced by exogenous free fatty acids (FFA) using HepG2 cells and elucidate the underlying molecular mechanism. The cells were exposed to 0.5 mM FFA to induce intracellular lipid accumulation, followed by co-treatment with isoquercitrin to confirm the potential inhibitory effect on FFA-induced lipid production. HepG2 cells exposed to FFA alone exhibited intracellular lipid accumulation, compromised endoplasmic reticulum (ER) stress, and enhanced expression of proteins and genes involved in lipid synthesis; however, co-treatment with isoquercitrin decreased the expression of these molecules in a dose-dependent manner. Furthermore, isoquercitrin could activate AMP-activated protein kinase (AMPK), a key regulatory protein of hepatic fatty acid oxidation, suppressing new lipid production by phosphorylating acetyl-CoA carboxylase (ACC) and inhibiting sterol regulatory element-binding transcription factor 1 (SREBP-1)/fatty acid synthase (FAS) signals. Overall, these findings suggest that isoquercitrin can be employed as a therapeutic agent to improve NAFLD via the regulation of lipid metabolism by targeting the AMPK/ACC and SREBP1/FAS pathways.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Hep G2 , Ácidos Graxos não Esterificados/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Fígado , Metabolismo dos Lipídeos
10.
Nat Commun ; 13(1): 4084, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835749

RESUMO

Dysregulation of adipose tissue plasmalogen metabolism is associated with obesity-related metabolic diseases. We report that feeding mice a high-fat diet reduces adipose tissue lysoplasmalogen levels and increases transmembrane protein 86 A (TMEM86A), a putative lysoplasmalogenase. Untargeted lipidomic analysis demonstrates that adipocyte-specific TMEM86A-knockout (AKO) increases lysoplasmalogen content in adipose tissue, including plasmenyl lysophosphatidylethanolamine 18:0 (LPE P-18:0). Surprisingly, TMEM86A AKO increases protein kinase A signalling pathways owing to inhibition of phosphodiesterase 3B and elevation of cyclic adenosine monophosphate. TMEM86A AKO upregulates mitochondrial oxidative metabolism, elevates energy expenditure, and protects mice from metabolic dysfunction induced by high-fat feeding. Importantly, the effects of TMEM86A AKO are largely reproduced in vitro and in vivo by LPE P-18:0 supplementation. LPE P-18:0 levels are significantly lower in adipose tissue of human patients with obesity, suggesting that TMEM86A inhibition or lysoplasmalogen supplementation might be therapeutic approaches for preventing or treating obesity-related metabolic diseases.


Assuntos
Plasmalogênios , Termogênese , Adipócitos/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/fisiologia , Homeostase , Humanos , Hidrolases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Plasmalogênios/metabolismo , Termogênese/fisiologia
11.
J Nutr Biochem ; 108: 109082, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35697284

RESUMO

Dietary restriction (DR) has been revealed to have health benefits as it induces reduction in oxidative stress. Glutathione (GSH), an important cellular antioxidant, is increased in rodent livers owing to DR; however, the exact mechanism and clinical relevance of DR are yet to be fully understood. In this study, male C57BL/6 mice were administered a 50% restricted diet for 7 d, and the hepatic sulfur-containing amino acid (SAA) metabolism was determined to assess the biosynthesis of GSH. The hepatic methionine level was found to decrease, while the homocysteine, cysteine, and GSH levels were increased owing to decreased betaine-homocysteine methyltransferase (BHMT) and increased CßS, CγL, and glutamate cysteine ligase catalytic subunit (GCLC) proteins in the livers of mice subjected to DR. To determine the effects of DR on drug-induced oxidative liver injury, mice subjected to DR were injected with a toxic dose (300 mg/kg) of acetaminophen (APAP). DR significantly alleviated APAP-induced liver damage and oxidative stress, which might be attributed to the higher levels of GSH and related antioxidant enzyme (GPx, GSTα, and GSTµ) in the livers. The decrease in the levels of hepatic CYP1A, 2E1, and 3A, which imply the inhibition of APAP metabolic activation, could contribute to the lower hepatotoxicity in mice subjected to DR. Overall, our findings revealed that DR stimulated the hepatic transsulfuration pathway and GSH synthesis. The consequent elevation of GSH could thus serve as an important mechanism of DR-mediated liver protection against APAP intoxication.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/efeitos adversos , Acetaminofen/metabolismo , Animais , Antioxidantes/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Cisteína/metabolismo , Glutationa/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Enxofre/metabolismo , Enxofre/farmacologia
12.
Life (Basel) ; 12(3)2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35330105

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver dysfunction characterized by excess lipid accumulation; non-alcoholic steatohepatitis can transform into more severe conditions, such as cirrhosis and hepatocellular carcinoma. Although several pharmacologic approaches have been evaluated in clinical trials, there are no approved therapies for NAFLD. Previous studies have suggested that taurine supplementation alleviates fatty liver; however, the underlying mechanism remains obscure. In this study, we investigated the beneficial effects of taurine on fatty liver injury in vivo induced by tunicamycin, a chemical endoplasmic reticulum (ER) stressor. The mice were administered 2% taurine for 2 weeks prior to intraperitoneal tunicamycin injection; after 72 h of treatment, the mice were euthanized. Tunicamycin treatment significantly increased the levels of serum ALT and AST and hepatic triglycerides. Notably, these changes were alleviated by taurine supplementation. Taurine normalized the protein and/or mRNA levels involved in ER stress signaling (IRE1a, p-IRE1a, ATF6, XBP1, BiP, and CHOP) and lipid metabolism (CD36, MTTP, and ApoB), which were dysregulated by tunicamycin treatment. The stimulation of hepatic lipid export by taurine was evidenced by the recovery of blood VLDL levels. Furthermore, taurine supplementation prevented tunicamycin-induced lipid peroxidation and decreased glutathione (GSH) levels by correcting abnormal cysteine catabolism involved in the production of both taurine and GSH. Therefore, taurine supplementation can prevent tunicamycin-induced liver injury by counteracting oxidative and ER stress.

13.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35163511

RESUMO

Sirtuins (SIRTs), which are nicotinamide adenine dinucleotide-dependent class III histone deacetylases, regulate cell division, survival, and senescence. Although sirtinol, a synthetic SIRT inhibitor, is known to exhibit antitumor effects, its mechanism of action is not well understood. Therefore, we aimed to assess the anticancer effects and underlying mechanism of MHY2245, a derivative of sirtinol, in HCT116 human colorectal cancer cells in vitro. Treatment with MHY2245 decreased SIRT1 activity and caused DNA damage, leading to the upregulation of p53 acetylation, and increased levels of p53, phosphorylation of H2A histone family member X, ataxia telangiectasia and Rad3-related kinase, checkpoint kinase 1 (Chk1), and Chk2. The level of the breast cancer type 1 susceptibility protein was also found to decrease. MHY2245 induced G2/M phase cell cycle arrest via the downregulation of cyclin B1, cell division cycle protein 2 (Cdc2), and Cdc25c. Further, MHY2245 induced HCT116 cell death via apoptosis, which was accompanied by internucleosomal DNA fragmentation, decreased B-cell lymphoma 2 (Bcl-2) levels, increased Bcl-2-asscociated X protein levels, cleavage of poly(ADP-ribose) polymerase, and activation of caspases -3, -8, and -9. Overall, MHY2245 induces cell cycle arrest, triggers apoptosis through caspase activation, and exhibits DNA damage response-associated anticancer effects.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Naftalenos/farmacologia , Sirtuínas/antagonistas & inibidores , Apoptose , Benzamidas/química , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HT29 , Humanos , Naftalenos/química , Naftóis/química
14.
Lab Anim Res ; 37(1): 33, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34876239

RESUMO

BACKGROUND: To determine whether the background of BALB/c substrains affects the response to anti-tumor drugs, we measured for alterations in tumor growth, histopathological structure of the tumor, and expressions of tumor-related proteins in three BALB/c substrains derived from different sources (BALB/cKorl, BALB/cA and BALB/cB), after exposure to varying concentrations of cisplatin (0.1, 1 and 5 mg/kg). RESULTS: Cisplatin treatment induced similar responses for body and organ weights, serum analyzing factors, and blood analyzing factors in all BALB/c substrains with CT26 syngeneic tumor. Few differences were detected in the volume and histopathological structure of the CT26 tumor. Growth inhibition of CT26 tumors after exposure to cisplatin was greater in the BALB/cB substrain than BALB/cKorl and BALB/cA substrains, and a similar pattern was observed in the histopathological structure of tumors. However, the expression levels of other tumor-related factors, including Ki67, p27, p53, Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl-2), caspase-3 (Cas-3), matrix metallopeptidase 2 (MMP2) and vascular endothelial growth factor (VEGF) proteins, were constantly maintained in the tumors of all three substrains after cisplatin treatment. A similar decrease pattern was observed for the expressions of inflammatory cytokines, including interleukin (IL)-1ß, IL-6 and IL-10, in the CT26 tumors of the three BALB/c substrains. CONCLUSIONS: Taken together, results of the present study indicate that the genetic background of the three BALB/c substrains has no major effect on the therapeutic responsiveness of cisplatin, except growth and histopathology of the CT26 syngeneic tumor.

15.
Antioxidants (Basel) ; 10(12)2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34943052

RESUMO

Overdose of acetaminophen (APAP) can cause severe liver injury. Although alcohol is considered a risk factor for APAP toxicity, the mechanism underlying the interaction between alcohol and APAP remains unclear. Binge alcohol (5 g/kg every 12 h, 3 doses) reduced the concentration of cysteine and glutathione (GSH) and decreased expression of cystathionine ß-synthase (CßS), cystathionine γ-lyase (CγL), and glutamate cysteine ligase catalytic subunit (GCLC) in the livers of male C57BL/6 mice. Furthermore, the levels of GSH S-transferase (GST) and GSH peroxidase (GPx) were decreased. To evaluate the effect of binge drinking on APAP-induced liver injury, 300 mg APAP was administered following alcohol binges. APAP in the binge group significantly amplified the serum ALT more than two fold and enhanced the pro-apoptotic proteins with a severe centrilobular necrosis compared to APAP alone. APAP treatment after alcohol binges caused lower levels of hepatic cysteine and GSH than APAP alone over 24 h, indicating that alcohol binges reduced GSH regenerating potential. Exposure to APAP after binge treatment significantly increased oxidative stress (lipid peroxidation) and endoplasmic reticulum (ER) stress (Grp78 and ATF6) markers at 6 h after treatment. Notably, the IRE1α/ASK1/MKK4/JNK pathway was activated, whereas CHOP expression was reduced by APAP administration in mice with pre-exposed alcohol binges compared with APAP alone. Thus, pretreatment with binge alcohol decreases GSH-mediated antioxidant capacity and contributes to augmentation of liver injury caused by subsequent APAP administration through differential ER stress signaling pathway.

16.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34681198

RESUMO

A series of twenty-six compounds of furfuryl or benzyl tetrahydropyrazino[1,2-a]indole analogs were synthesized and evaluated for cytotoxic activity against the estrogen receptor (ER)-positive breast cancer cell line (MCF-7) and the epidermal growth factor receptor (EGFR) over-expressed triple-negative breast cancer cell line (MDA-MB-468). Among them, compounds 2b, 2f and 2i showed more potent activity and selectivity against MDA-MB-468 cells than gefitinib, as an EGFR- tyrosine kinase inhibitor. In addition, it was confirmed by means of isobologram analysis of combinational treatment with gefitinib that they have a synergistic effect, especially compounds 2b and 2f, which inhibit Akt T308 phosphorylation. Moreover, it was confirmed that 2-benzyl-1-oxo-1,2,3,4-tetrahydropyrazino[1,2-a]indole-3-carboxamide analogs (2b, 2f, and Ref 2) tend to selectively inhibit PI3Kß, which is involved in the phosphorylation of Akt.

17.
Cells ; 10(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685701

RESUMO

A hallmark of malignant solid tumor is extracellular acidification coupled with metabolic switch to aerobic glycolysis. Using the human MCF10A progression model of breast cancer, we show that glycolytic switch and extracellular acidosis in aggressive cancer cells correlate with increased expression of tissue inhibitor of metalloproteinase-1 (TIMP-1), known to induce intracellular signal transduction through the interaction with its cell surface receptor CD63, independent of its metalloproteinase inhibitory function. We found that, in aggressive breast carcinoma, the TIMP-1-CD63 signaling axis induced a metabolic switch by upregulating the rate of aerobic glycolysis, lowering mitochondrial respiration, preventing intracellular acidification, and inducing extracellular acidosis. Carbonic anhydrase IX (CAIX), a regulator of cellular pH through the hydration of metabolically released pericellular CO2, was identified as a downstream mediator of the TIMP-1-CD63 signaling axis responsible for extracellular acidosis. Consistently with our previous study, the TIMP-1-CD63 signaling promoted survival of breast cancer cells. Interestingly, breast carcinoma cell survival was drastically reduced upon shRNA-mediated knockdown of CAIX expression, demonstrating the significance of CAIX-regulated pH in the TIMP-1-CD63-mediated cancer cell survival. Taken together, the present study demonstrates the functional significance of TIMP-1-CD63-CAXI signaling axis in the regulation of tumor metabolism, extracellular acidosis, and survival of breast carcinoma. We propose that this axis may serve as a novel therapeutic target.


Assuntos
Neoplasias da Mama/metabolismo , Tetraspanina 30/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Ácidos/metabolismo , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular , Progressão da Doença , Espaço Extracelular/metabolismo , Feminino , Humanos , Modelos Biológicos , Invasividade Neoplásica
18.
Lab Anim Res ; 37(1): 21, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34348800

RESUMO

BACKGROUND: As a laboratory animal resource, the ICR mouse is commonly used in a variety of research fields. However, information on differences in exercise-related characteristics in ICR mice derived from different lineages and the underlying mechanisms remains to be elucidated. In this study, we investigated the intrinsic exercise capacity and a magnitude of response to acute exercise, and sought to identify mechanisms contributing to difference in Korl:ICR (a novel ICR lineage recently established by the National Institute of Food and Drug Safety Evaluation, Korea) and two commercialized ICR lineages derived from different origins (viz., A:ICR mouse from Orient Bio Com, the United States, and B:ICR mouse from Japan SLC Inc., Japan). RESULTS: Results showed that despite no significant difference in body weight and weight-proportioned tissue mass of heart and skeletal muscles among groups, the relatively low intrinsic exercise capacity and exaggerated response to acute exercise were identified in B:ICR comparted with Korl:ICR and A:ICR, as reflected by total work and lactate threshold (LT). Also, the mitochondrial efficiency expressed as the complex 1 and complex 1 + 2 respiratory control ratio (RCR) values for cardiac mitochondrial O2 consumption in B:ICR was significantly lower than that in Korl:ICR with higher level of state 2 respiration by glutamate/malate and UCP3 expression in cardiac muscle. CONCLUSIONS: Taken together, these results indicate that the intrinsic exercise capacity of ICR mouse varies according to lineages, suggesting the role of cardiac mitochondrial coupling efficiency as a possible mechanism that might contribute to differences in the intrinsic exercise capacity and magnitude of response to exercise.

19.
ACS Appl Mater Interfaces ; 13(24): 27945-27954, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110788

RESUMO

Magnetic resonance angiography (MRA) is an important imaging technique that can be used to identify and characterize various types of vascular diseases. However, currently used molecular contrast agents are unsuitable for MRA due to the short intravascular retention time, the whole-body distribution, and the relatively low contrast effect. In this study, we developed a vascular analysis contrast agent (i.e., VasCA) for MRA, which is a simple and biocompatible 1:1 host-guest assembly of PEGylated ß-cyclodextrin and gadolinium chelate with renal clearable size and high relaxivity (r1 = 9.27 mM-1 s-1). Its biocompatibility was confirmed by in vivo animal studies as well as in vitro 3D cell culture. In a tumor-bearing rat model, VasCA circulated in the blood vessels much longer (4.3-fold increase) than gadoterate meglumine (Dotarem) and was mainly excreted by the renal system after intravenous injection. This feature of VasCA allows characterization of tumor microvasculature (e.g., feeding and draining vessels) as well as visualization of small vessels in the brain and body organs. Furthermore, after treatment with an angiogenesis inhibitor (i.e., sorafenib), VasCA revealed the vessel normalization process and allowed the assessment of viable and necrotic tumor regions. Our study provides a useful tool for diverse MRA applications, including tumor characterization, early-stage evaluation of drug efficacy, and treatment planning, as well as diagnosis of cardiovascular diseases.


Assuntos
Meios de Contraste/química , Angiografia por Ressonância Magnética/métodos , Microvasos/diagnóstico por imagem , Animais , Quelantes/química , Gadolínio/química , Células HaCaT , Células Hep G2 , Humanos , Masculino , Polietilenoglicóis/química , Ratos Sprague-Dawley , beta-Ciclodextrinas/química
20.
Molecules ; 26(4)2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33672046

RESUMO

Substituted N-phenyl cinnamamide derivatives were designed and synthesized to confirm activation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway by the electronic effect on beta-position of Michael acceptor according to introducing the R1 and R2 group. Compounds were screened using the Nrf2/antioxidant response element (ARE)-driven luciferase reporter assay. Compound 1g showed desirable luciferase activity in HepG2 cells without cell toxicity. mRNA and protein expression of Nrf2/ARE target genes such as NAD(P)H quinone oxidoreductase 1, hemeoxygenase-1, and glutamate-cysteine ligase catalytic subunit (GCLC) were upregulated by compound 1g in a concentration-dependent manner. Treatment with 1g resulted in increased endogenous antioxidant glutathione, showing strong correlation with enhanced GCLC expression for synthesis of glutathione. In addition, tert-butyl hydroperoxide (t-BHP)-generated reactive oxygen species were significantly removed by 1g, and the results of a cell survival assay in a t-BHP-induced oxidative cell injury model showed a cytoprotective effect of 1g in a concentration dependent manner. In conclusion, the novel compound 1g can be utilized as an Nrf2/ARE activator in antioxidative therapy.


Assuntos
Cinamatos/farmacologia , Citoproteção/efeitos dos fármacos , Glutationa/biossíntese , Hepatócitos/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Elementos de Resposta Antioxidante/genética , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Morte Celular/efeitos dos fármacos , Cinamatos/química , Glutationa/metabolismo , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Humanos , Luciferases/metabolismo , Fator 2 Relacionado a NF-E2/agonistas , Substâncias Protetoras/farmacologia , terc-Butil Hidroperóxido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA