RESUMO
Gene therapy is emerging as an effective treatment option for various inherited genetic diseases. Gutless adenovirus (GLAd), also known as helper-dependent adenovirus (HDAd), has many notable characteristics as a gene delivery vector for this particular type of gene therapy, including broad tropism, high infectivity, a large transgene cargo capacity, and an absence of integration into the host genome. Additionally, GLAd ensures long-term transgene expression in host organisms owing to its minimal immunogenicity, since it was constructed following the deletion of all the genes from an adenovirus. However, the clinical use of GLAd for the treatment of inherited genetic diseases has been hampered by unavoidable contamination of the highly immunogenic adenovirus used as a helper for GLAd production. Here, we report the production of GLAd in the absence of a helper adenovirus, which was achieved with a helper plasmid instead. Utilizing this helper plasmid, we successfully produced large quantities of recombinant GLAd. Importantly, our helper plasmid-based system exclusively produced recombinant GLAd with no generation of helper plasmid-originating adenovirus and replication-competent adenovirus (RCA). The recombinant GLAd that was produced efficiently delivered transgenes regardless of their size and exhibited therapeutic potential for Huntington's disease (HD) and Duchenne muscular dystrophy (DMD). Our data indicate that our helper plasmid-based GLAd production system could become a new platform for GLAd-based gene therapy.
Assuntos
Adenoviridae/genética , Terapia Genética , Vetores Genéticos/genética , Transgenes/genética , Linhagem Celular , Vetores Genéticos/uso terapêutico , Genoma Humano/genética , Humanos , Doença de Huntington/genética , Doença de Huntington/terapia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Plasmídeos/genéticaRESUMO
Gene silencing by RNA interference (RNAi) using short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) has become a valuable tool for evaluating the target gene function. Here, we report an approach for silencing multiple target genes simultaneously by expressing one single transcript encoding different target shRNAs. We first constructed the cytomegalovirus (CMV) promoter-driven expression vectors, each of which expresses microRNA mir-30-mimicked shRNA specifically targeting X-chromosome-linked inhibitor of apoptosis protein (XIAP), Akt, or Bcl-2. Adenovirus harbouring each shRNA expression cassette silenced corresponding target gene expression. Using these mono-cistronic shRNA cassettes, we again constructed the CMV promoter-driven expression vector, into which multi-cistronic shRNAs for XIAP, Akt and Bcl-2 in order were cloned. Adenovirus delivering this multi-cistronic expression cassette silenced each of the target genes as effectively as adenovirus containing individual shRNA did. Our data indicate that single promoter-driven multi-cistronic shRNAs effectively silence multiple target genes. Our approach provides a new smart tool for silencing multiple target genes and will potentially serve as an RNAi-based tailored therapy requiring suppression of target gene expression.
Assuntos
Técnicas de Silenciamento de Genes/métodos , Interferência de RNA , RNA Interferente Pequeno/genética , Apoptose/genética , Linhagem Celular , Citomegalovirus/genética , Vetores Genéticos , Humanos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-bcl-2/genética , RNA Interferente Pequeno/química , Transcrição Gênica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genéticaRESUMO
Previously, the lysozyme gene of the Klebsiella phage K11 was partially sequenced in our lab. Using the sequence information the lysozyme gene of the Klebsiella phage K11 was amplified and cloned using the polymerase chain reaction of the pfu DNA polymerase. The nucleotide sequence of phage K11 lysozyme gene was determined. The open reading frame corresponds to a polypeptide with 151 amino acids and molecular weight of 16,932 Da. The deduced amino acid sequence of this polypeptide shows 74-75% homologies to the T7 and T3 phage lysozymes. Although the gene was efficiently expressed under the control of tac promoter in Escherichia coli XL1-blue cells at 37 degrees C, most of the K11 lysozyme produced was insoluble. When the temperature of cell growth was lowered, however, solubility of the K11 lysozyme was increased gradually. The insoluble protein expressed at 37 degrees C was solubilized in 5 M guanidine-HCl and refolded in the presence of oxido-shuffling agent (GSH/GSSG). Through the refolding process the recombinant lysozyme was solubilized and purified. The purified K11 lysozyme showed transcription inhibition of K11 RNA polymerase as well as amidase activity. These results showed that the lysozyme of bacteriophage K11 is a bifunctional protein that cuts a bond in the bacterial cell wall and selectively inhibits K11 phage RNA polymerase. Also, transcription inhibition ability of K11 lysozyme with T7 or SP6 phage RNA polymerase was measured. T7 RNA polymerase was less inhibited than K11 RNA polymerase by K11 lysozyme. But SP6 RNA polymerase was not nearly inhibited by K11 lysozyme.