Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Viruses ; 16(2)2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38399983

RESUMO

Congenital human cytomegalovirus (HCMV) infection may cause life-threatening disease and permanent damage to the central nervous system. The mouse model of CMV infection is most commonly used to study mechanisms of infection and pathogenesis. While essential to limit mouse CMV (MCMV) replication, the inflammatory responses, particularly IFNγ and TNFα, cause neurodevelopmental abnormalities. Other soluble mediators of the immune response in most tissues remain largely unexplored. To address this gap, we quantified 48 soluble mediators of the immune response, including 32 cytokines, 10 chemokines, 3 growth factors/regulators, and 3 soluble receptors in the spleen, liver, lungs, and brain at 9 and 14 days postinfection (dpi). Our analysis found 25 induced molecules in the brain at 9 dpi, with an additional 8 showing statistically elevated responses at 14 dpi. Specifically, all analyzed CCL group cytokines (CCL2, CCL3, CCL4, CCL5, CCL7, and CCL11) were upregulated at 14 dpi in the brain. Furthermore, data revealed differentially regulated analytes across tissues, such as CCL11, CXCL5, and IL-10 in the brain, IL-33/IL-33R in the liver, and VEGF-a and IL-5 in the lungs. Overall, this study provides an overview of the immune dynamics of soluble mediators in congenital CMV.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Animais , Humanos , Camundongos , Citocinas , Encéfalo , Fator de Necrose Tumoral alfa
2.
Eur J Immunol ; 52(6): 936-945, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35304741

RESUMO

COVID-19 vaccines prevent severe forms of the disease, but do not warrant complete protection against breakthrough infections. This could be due to suboptimal mucosal immunity at the site of virus entry, given that all currently approved vaccines are administered via the intramuscular route. In this study, we assessed humoral and cellular immune responses in BALB/c mice after intranasal and intramuscular immunization with adenoviral vector ChAdOx1-S expressing full-length Spike protein of SARS-CoV-2. We showed that both routes of vaccination induced a potent IgG antibody response, as well as robust neutralizing capacity, but intranasal vaccination elicited a superior IgA antibody titer in the sera and in the respiratory mucosa. Bronchoalveolar lavage from intranasally immunized mice efficiently neutralized SARS-CoV-2, which has not been the case in intramuscularly immunized group. Moreover, substantially higher percentages of epitope-specific CD8 T cells exhibiting a tissue resident phenotype were found in the lungs of intranasally immunized animals. Finally, both intranasal and intramuscular vaccination with ChAdOx1-S efficiently protected the mice after the challenge with recombinant herpesvirus expressing the Spike protein. Our results demonstrate that intranasal application of adenoviral vector ChAdOx1-S induces superior mucosal immunity and therefore could be a promising strategy for putting the COVID-19 pandemic under control.


Assuntos
COVID-19 , Vacinas Virais , Adenoviridae/genética , Administração Intranasal , Animais , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunidade Celular , Imunidade nas Mucosas , Camundongos , Camundongos Endogâmicos BALB C , Pandemias/prevenção & controle , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Vacinação/métodos
3.
J Virol ; 96(2): e0087621, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34705561

RESUMO

Broad tissue tropism of cytomegaloviruses (CMVs) is facilitated by different glycoprotein entry complexes, which are conserved between human CMV (HCMV) and murine CMV (MCMV). Among the wide array of cell types susceptible to the infection, mononuclear phagocytes (MNPs) play a unique role in the pathogenesis of the infection as they contribute both to the virus spread and immune control. CMVs have dedicated numerous genes for the efficient infection and evasion of macrophages and dendritic cells. In this study, we have characterized the properties and function of M116, a previously poorly described but highly transcribed MCMV gene region that encodes M116.1p, a novel protein necessary for the efficient infection of MNPs and viral spread in vivo. Our study further revealed that M116.1p shares similarities with its positional homologs in HCMV and RCMV, UL116 and R116, respectively, such as late kinetics of expression, N-glycosylation, localization to the virion assembly compartment, and interaction with gH-a member of the CMVs fusion complex. This study, therefore, expands our knowledge about virally encoded glycoproteins that play important roles in viral infectivity and tropism. IMPORTANCE Human cytomegalovirus (HCMV) is a species-specific herpesvirus that causes severe disease in immunocompromised individuals and immunologically immature neonates. Murine cytomegalovirus (MCMV) is biologically similar to HCMV, and it serves as a widely used model for studying the infection, pathogenesis, and immune responses to HCMV. In our previous work, we have identified the M116 ORF as one of the most extensively transcribed regions of the MCMV genome without an assigned function. This study shows that the M116 locus codes for a novel protein, M116.1p, which shares similarities with UL116 and R116 in HCMV and RCMV, respectively, and is required for the efficient infection of mononuclear phagocytes and virus spread in vivo. Furthermore, this study establishes the α-M116 monoclonal antibody and MCMV mutants lacking M116, generated in this work, as valuable tools for studying the role of macrophages and dendritic cells in limiting CMV infection following different MCMV administration routes.


Assuntos
Sistema Fagocitário Mononuclear/virologia , Muromegalovirus/fisiologia , Proteínas do Envelope Viral/metabolismo , Animais , Fibroblastos/metabolismo , Fibroblastos/virologia , Glicosilação , Infecções por Herpesviridae/virologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Sistema Fagocitário Mononuclear/metabolismo , Transcrição Gênica , Proteínas do Envelope Viral/genética , Vírion/metabolismo , Montagem de Vírus , Internalização do Vírus , Replicação Viral
4.
Front Immunol ; 12: 681380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34168650

RESUMO

Viral vectors have emerged as a promising alternative to classical vaccines due to their great potential for induction of a potent cellular and humoral immunity. Cytomegalovirus (CMV) is an attractive vaccine vector due to its large genome with many non-essential immunoregulatory genes that can be easily manipulated to modify the immune response. CMV generates a strong antigen-specific CD8 T cell response with a gradual accumulation of these cells in the process called memory inflation. In our previous work, we have constructed a mouse CMV vector expressing NKG2D ligand RAE-1γ in place of its viral inhibitor m152 (RAE-1γMCMV), which proved to be highly attenuated in vivo. Despite attenuation, RAE-1γMCMV induced a substantially stronger CD8 T cell response to vectored antigen than the control vector and provided superior protection against bacterial and tumor challenge. In the present study, we confirmed the enhanced protective capacity of RAE-1γMCMV as a tumor vaccine vector and determined the phenotypical and functional characteristics of memory CD8 T cells induced by the RAE-1γ expressing MCMV. RNAseq data revealed higher transcription of numerous genes associated with effector-like CD8 T cell phenotype in RAE-1γMCMV immunized mice. CD8 T cells primed with RAE-1γMCMV were enriched in TCF1 negative population, with higher expression of KLRG1 and lower expression of CD127, CD27, and Eomes. These phenotypical differences were associated with distinct functional features as cells primed with RAE-1γMCMV showed inferior cytokine-producing abilities but comparable cytotoxic potential. After adoptive transfer into naive hosts, OT-1 cells induced with both RAE-1γMCMV and the control vector were equally efficient in rejecting established tumors, suggesting the context of latent infection and cell numbers as important determinants of enhanced anti-tumor response following RAE-1γMCMV vaccination. Overall, our results shed new light on the phenotypical and functional distinctness of memory CD8 T cells induced with CMV vector expressing cellular ligand for the NKG2D receptor.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Vacinas contra Citomegalovirus/imunologia , Memória Imunológica , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Fenótipo , Animais , Vacinas Anticâncer/imunologia , Biologia Computacional/métodos , Citomegalovirus/imunologia , Citotoxicidade Imunológica , Perfilação da Expressão Gênica , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Imunofenotipagem , Ativação Linfocitária/imunologia , Camundongos , Muromegalovirus/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Transcriptoma
5.
Immunity ; 54(7): 1478-1493.e6, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34015257

RESUMO

Viral infections during pregnancy are a considerable cause of adverse outcomes and birth defects, and the underlying mechanisms are poorly understood. Among those, cytomegalovirus (CMV) infection stands out as the most common intrauterine infection in humans, putatively causing early pregnancy loss. We employed murine CMV as a model to study the consequences of viral infection on pregnancy outcome and fertility maintenance. Even though pregnant mice successfully controlled CMV infection, we observed highly selective, strong infection of corpus luteum (CL) cells in their ovaries. High infection densities indicated complete failure of immune control in CL cells, resulting in progesterone insufficiency and pregnancy loss. An abundance of gap junctions, absence of vasculature, strong type I interferon (IFN) responses, and interaction of innate immune cells fully protected the ovarian follicles from viral infection. Our work provides fundamental insights into the effect of CMV infection on pregnancy loss and mechanisms protecting fertility.


Assuntos
Corpo Lúteo/imunologia , Infecções por Citomegalovirus/imunologia , Fertilidade/imunologia , Imunidade Inata/imunologia , Animais , Corpo Lúteo/virologia , Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Feminino , Junções Comunicantes/imunologia , Interferon Tipo I/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Gravidez , Progesterona/imunologia
6.
Nat Microbiol ; 5(2): 331-342, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31844296

RESUMO

Viruses manipulate cellular signalling by inducing the degradation of crucial signal transducers, usually via the ubiquitin-proteasome pathway. Here, we show that the murine cytomegalovirus (Murid herpesvirus 1) M45 protein induces the degradation of two cellular signalling proteins, the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) essential modulator (NEMO) and the receptor-interacting protein kinase 1 (RIPK1), via a different mechanism: it induces their sequestration as insoluble protein aggregates and subsequently facilitates their degradation by autophagy. Aggregation of target proteins requires a distinct sequence motif in M45, which we termed 'induced protein aggregation motif'. In a second step, M45 recruits the retromer component vacuolar protein sorting 26B (VPS26B) and the microtubule-associated protein light chain 3 (LC3)-interacting adaptor protein TBC1D5 to facilitate degradation of aggregates by selective autophagy. The induced protein aggregation motif is conserved in M45-homologous proteins of several human herpesviruses, including herpes simplex virus, Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, but is only partially conserved in the human cytomegalovirus UL45 protein. We further show that the HSV-1 ICP6 protein induces RIPK1 aggregation and degradation in a similar fashion to M45. These data suggest that induced protein aggregation combined with selective autophagy of aggregates (aggrephagy) represents a conserved viral immune-evasion mechanism.


Assuntos
Herpesviridae/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Proteína Serina-Treonina Quinases de Interação com Receptores/imunologia , Animais , Autofagia/imunologia , Proteína 5 Relacionada à Autofagia/deficiência , Proteína 5 Relacionada à Autofagia/genética , Células Cultivadas , Células HEK293 , Herpesviridae/metabolismo , Herpesviridae/patogenicidade , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/metabolismo , Herpesvirus Humano 1/patogenicidade , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Muromegalovirus/imunologia , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidade , Agregados Proteicos/imunologia , Proteólise , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/imunologia , Ribonucleotídeo Redutases/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo
7.
Front Immunol ; 9: 991, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867968

RESUMO

The development of a vaccine against human cytomegalovirus (CMV) has been a subject of long-term medical interest. The research during recent years identified CMV as an attractive vaccine vector against infectious diseases and tumors. The immune response to CMV persists over a lifetime and its unique feature is the inflationary T cell response to certain viral epitopes. CMV encodes numerous genes involved in immunoevasion, which are non-essential for virus growth in vitro. The deletion of those genes results in virus attenuation in vivo, which enables us to dramatically manipulate its virulence and the immune response. We have previously shown that the murine CMV (MCMV) expressing RAE-1γ, one of the cellular ligands for the NKG2D receptor, is highly attenuated in vivo but retains the ability to induce a strong CD8+ T cell response. Here, we demonstrate that recombinant MCMV expressing high affinity NKG2D ligand murine UL16 binding protein-like transcript (MULT-1) (MULT-1MCMV) inserted in the place of its viral inhibitor is dramatically attenuated in vivo in a NK cell-dependent manner, both in immunocompetent adult mice and in immunologically immature newborns. MULT-1MCMV was more attenuated than the recombinant virus expressing RAE-1γ. Despite the drastic sensitivity to innate immune control, MULT-1MCMV induced an efficient CD8+ T cell response to viral and vectored antigens. By using in vitro assay, we showed that similar to RAE-1γMCMV, MULT-1 expressing virus provided strong priming of CD8+ T cells. Moreover, MULT-1MCMV was able to induce anti-viral antibodies, which after passing the transplacental barrier protect offspring of immunized mothers from challenge infection. Altogether, this study further supports the concept that CMV expressing NKG2D ligand possesses excellent characteristics to serve as a vaccine or vaccine vector.


Assuntos
Proteínas de Transporte/genética , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/imunologia , Antígenos de Histocompatibilidade Classe I/genética , Muromegalovirus/genética , Animais , Animais Recém-Nascidos , Linfócitos T CD8-Positivos/imunologia , Proteínas de Transporte/imunologia , Vacinas contra Citomegalovirus/genética , Modelos Animais de Doenças , Feminino , Vetores Genéticos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Imunidade Materno-Adquirida , Imunocompetência , Células Matadoras Naturais/imunologia , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Muromegalovirus/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia
8.
PLoS Pathog ; 13(5): e1006382, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542326

RESUMO

The type I interferon (IFN) response is imperative for the establishment of the early antiviral immune response. Here we report the identification of the first type I IFN antagonist encoded by murine cytomegalovirus (MCMV) that shuts down signaling following pattern recognition receptor (PRR) sensing. Screening of an MCMV open reading frame (ORF) library identified M35 as a novel and strong negative modulator of IFNß promoter induction following activation of both RNA and DNA cytoplasmic PRR. Additionally, M35 inhibits the proinflammatory cytokine response downstream of Toll-like receptors (TLR). Using a series of luciferase-based reporters with specific transcription factor binding sites, we determined that M35 targets NF-κB-, but not IRF-mediated, transcription. Expression of M35 upon retroviral transduction of immortalized bone marrow-derived macrophages (iBMDM) led to reduced IFNß transcription and secretion upon activation of stimulator of IFN genes (STING)-dependent signaling. On the other hand, M35 does not antagonize interferon-stimulated gene (ISG) 56 promoter induction or ISG transcription upon exogenous stimulation of the type I IFN receptor (IFNAR). M35 is present in the viral particle and, upon MCMV infection of fibroblasts, is immediately shuttled to the nucleus where it exerts its immunomodulatory effects. Deletion of M35 from the MCMV genome and hence from the viral particle resulted in elevated type I IFN transcription and secretion in vitro and in vivo. In the absence of M35, lower viral titers are observed during acute infection of the host, and productive infection in the salivary glands was not detected. In conclusion, the M35 protein is released by MCMV immediately upon infection in order to deftly inhibit the antiviral type I IFN response by targeting NF-κB-mediated transcription. The identification of this novel viral protein reinforces the importance of timely countermeasures in the complex relationship between virus and host.


Assuntos
Infecções por Citomegalovirus/imunologia , Interferon Tipo I/antagonistas & inibidores , Muromegalovirus/imunologia , Receptores de Reconhecimento de Padrão/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Animais , Infecções por Citomegalovirus/virologia , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Interferon beta/genética , Interferon beta/metabolismo , Macrófagos/imunologia , Macrófagos/virologia , Camundongos , Muromegalovirus/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Ligação Proteica , Receptores de Reconhecimento de Padrão/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA