Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 66(11): 3215-27, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25873677

RESUMO

Certain molecular mechanisms of Cd tolerance and accumulation have been identified in the model species Arabidopsis halleri, while intraspecific variability of these traits and the mechanisms of shoot detoxification were little addressed. The Cd tolerance and accumulation of metallicolous and non-metallicolous A. halleri populations from different genetic units were tested in controlled conditions. In addition, changes in shoot cell wall composition were investigated using Fourier transform infrared spectroscopy. Indeed, recent works on A. halleri suggest Cd sequestration both inside cells and in the cell wall/apoplast. All A. halleri populations tested were hypertolerant to Cd, and the metallicolous populations were on average the most tolerant. Accumulation was highly variable between and within populations, and populations that were non-accumulators of Cd were identified. The effect of Cd on the cell wall composition was quite similar in the sensitive species A. lyrata and in A. halleri individuals; the pectin/polysaccharide content of cell walls seems to increase after Cd treatment. Nevertheless, the changes induced by Cd were more pronounced in the less tolerant individuals, leading to a correlation between the level of tolerance and the extent of modifications. This work demonstrated that Cd tolerance and accumulation are highly variable traits in A. halleri, suggesting adaptation at the local scale and involvement of various molecular mechanisms. While in non-metallicolous populations drastic modifications of the cell wall occur due to higher Cd toxicity and/or Cd immobilization in this compartment, the increased tolerance of metallicolous populations probably involves other mechanisms such as vacuolar sequestration.


Assuntos
Arabidopsis/genética , Cádmio/metabolismo , Parede Celular/efeitos dos fármacos , Variação Genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Biomassa , Cádmio/toxicidade , Parede Celular/metabolismo , Hibridização Genética , Hidroponia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/metabolismo , Análise de Componente Principal , Especificidade da Espécie , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Fisiológico
2.
Biometals ; 26(4): 633-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23881358

RESUMO

On sols highly polluted by trace metallic elements the majority of plant species are excluders, limiting the entry and the root to shoot translocation of trace metals. However a rare class of plants called hyperaccumulators possess remarkable adaptation because those plants combine extremely high tolerance degrees and foliar accumulation of trace elements. Hyperaccumulators have recently gained considerable interest, because of their potential use in phytoremediation, phytomining and biofortification. On a more fundamental point of view hyperaccumulators of trace metals are case studies to understand metal homeostasis and detoxification mechanisms. Hyperaccumulation of trace metals usually depends on the enhancement of at least four processes, which are the absorption from the soil, the loading in the xylem in the roots and the unloading from the xylem in the leaves and the detoxification in the shoot. Cadmium is one of the most toxic trace metallic elements for living organisms and its accumulation in the environment is recognized as a worldwide concern. To date, only nine species have been recognized as Cd hyperaccumulators that is to say able to tolerate and accumulate more than 0.01 % Cd in shoot dry biomass. Among these species, four belong to the Brassicaceae family with Arabidopsis halleri and Noccaea caerulescens being considered as models. An update of our knowledge on the evolution of hyperaccumulators will be presented here.


Assuntos
Cádmio/metabolismo , Cádmio/toxicidade , Plantas/efeitos dos fármacos , Plantas/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA