Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
RNA ; 30(2): 149-170, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38071476

RESUMO

Intron branchpoint (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect the binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after the addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during cotranscriptional splicing in Plad-B using single-molecule intron tracking to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between the binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten the characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Íntrons/genética , Ribonucleoproteína Nuclear Pequena U2/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Splicing de RNA , Spliceossomos/genética , Aminoácidos/genética , Precursores de RNA/genética
2.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873484

RESUMO

Intron branch point (BP) recognition by the U2 snRNP is a critical step of splicing, vulnerable to recurrent cancer mutations and bacterial natural product inhibitors. The BP binds a conserved pocket in the SF3B1 (human) or Hsh155 (yeast) U2 snRNP protein. Amino acids that line this pocket affect binding of splicing inhibitors like Pladienolide-B (Plad-B), such that organisms differ in their sensitivity. To study the mechanism of splicing inhibitor action in a simplified system, we modified the naturally Plad-B resistant yeast Saccharomyces cerevisiae by changing 14 amino acids in the Hsh155 BP pocket to those from human. This humanized yeast grows normally, and splicing is largely unaffected by the mutation. Splicing is inhibited within minutes after addition of Plad-B, and different introns appear inhibited to different extents. Intron-specific inhibition differences are also observed during co-transcriptional splicing in Plad-B using single-molecule intron tracking (SMIT) to minimize gene-specific transcription and decay rates that cloud estimates of inhibition by standard RNA-seq. Comparison of Plad-B intron sensitivities to those of the structurally distinct inhibitor Thailanstatin-A reveals intron-specific differences in sensitivity to different compounds. This work exposes a complex relationship between binding of different members of this class of inhibitors to the spliceosome and intron-specific rates of BP recognition and catalysis. Introns with variant BP sequences seem particularly sensitive, echoing observations from mammalian cells, where monitoring individual introns is complicated by multi-intron gene architecture and alternative splicing. The compact yeast system may hasten characterization of splicing inhibitors, accelerating improvements in selectivity and therapeutic efficacy.

3.
RNA ; 28(4): 583-595, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35046126

RESUMO

A critical step of pre-mRNA splicing is the recruitment of U2 snRNP to the branch point sequence of an intron. U2 snRNP conformation changes extensively during branch helix formation, and several RNA-dependent ATPases are implicated in the process. However, the molecular mechanisms involved remain to be fully dissected. We took advantage of the differential nucleotide triphosphates requirements for DExD/H-box enzymes to probe their contributions to in vitro spliceosome assembly. Both ATP and GTP hydrolysis support the formation of A-complex, indicating the activity of a DEAH-enzyme because DEAD-enzymes are selective for ATP. We immunodepleted DHX15 to assess its involvement, and although splicing efficiency decreases with reduced DHX15, A-complex accumulation incongruently increases. DHX15 depletion also results in the persistence of the atypical ATP-independent interaction between U2 snRNP and a minimal substrate that is otherwise destabilized in the presence of either ATP or GTP. These results lead us to hypothesize that DHX15 plays a quality control function in U2 snRNP's engagement with an intron. In efforts to identify the RNA target of DHX15, we determined that an extended polypyrimidine tract is not necessary for disruption of the atypical interaction between U2 snRNP and the minimal substrate. We also examined U2 snRNA by RNase H digestion and identified nucleotides in the branch binding region that become accessible with both ATP and GTP hydrolysis, again implicating a DEAH-enzyme. Together, our results demonstrate that multiple ATP-dependent rearrangements are likely involved in U2 snRNP addition to the spliceosome and that DHX15 may have an expanded role in maintaining splicing fidelity.


Assuntos
Ribonucleoproteína Nuclear Pequena U2 , Spliceossomos , Íntrons/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/genética , Ribonuclease H/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo
4.
Nat Commun ; 12(1): 4491, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301950

RESUMO

Intron selection during the formation of prespliceosomes is a critical event in pre-mRNA splicing. Chemical modulation of intron selection has emerged as a route for cancer therapy. Splicing modulators alter the splicing patterns in cells by binding to the U2 snRNP (small nuclear ribonucleoprotein)-a complex chaperoning the selection of branch and 3' splice sites. Here we report crystal structures of the SF3B module of the U2 snRNP in complex with spliceostatin and sudemycin FR901464 analogs, and the cryo-electron microscopy structure of a cross-exon prespliceosome-like complex arrested with spliceostatin A. The structures reveal how modulators inactivate the branch site in a sequence-dependent manner and stall an E-to-A prespliceosome intermediate by covalent coupling to a nucleophilic zinc finger belonging to the SF3B subunit PHF5A. These findings support a mechanism of intron recognition by the U2 snRNP as a toehold-mediated strand invasion and advance an unanticipated drug targeting concept.


Assuntos
DNA/genética , Íntrons/genética , Piranos/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Compostos de Espiro/metabolismo , Spliceossomos/metabolismo , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Piranos/química , Pironas/química , Pironas/metabolismo , Ribonucleoproteína Nuclear Pequena U2/química , Compostos de Espiro/química , Spliceossomos/ultraestrutura
5.
J Nat Prod ; 84(5): 1681-1706, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33974423

RESUMO

Spliceostatins and thailanstatins are intriguing natural products due to their structural features as well as their biological significance. This family of natural products has been the subject of immense synthetic interest because they exhibit very potent cytotoxicity in representative human cancer cell lines. The cytotoxic properties of these natural products are related to their ability to inhibit spliceosomes. FR901564 and spliceostatins have been shown to inhibit spliceosomes by binding to their SF3B component. Structurally, these natural products contain two highly functionalized tetrahydropyran rings with multiple stereogenic centers joined by a diene moiety and an acyclic side chain linked with an amide bond. Total syntheses of this family of natural products led to the development of useful synthetic strategies, which enabled the synthesis of potent derivatives. The spliceosome modulating properties of spliceostatins and synthetic derivatives opened the door for understanding the underlying spliceosome mechanism as well as the development of new therapies based upon small-molecule splicing modulators. This review outlines the total synthesis of spliceostatins, synthetic studies of structural derivatives, and their bioactivity.


Assuntos
Antineoplásicos/farmacologia , Piranos/farmacologia , Splicing de RNA/efeitos dos fármacos , Spliceossomos/efeitos dos fármacos , Antineoplásicos/síntese química , Produtos Biológicos/síntese química , Produtos Biológicos/farmacologia , Humanos , Estrutura Molecular , Piranos/síntese química
6.
Cell Chem Biol ; 28(8): 1145-1157.e6, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-33689684

RESUMO

Dysregulated pre-mRNA splicing is an emerging Achilles heel of cancers and myelodysplasias. To expand the currently limited portfolio of small-molecule drug leads, we screened for chemical modulators of the U2AF complex, which nucleates spliceosome assembly and is mutated in myelodysplasias. A hit compound specifically enhances RNA binding by a U2AF2 subunit. Remarkably, the compound inhibits splicing of representative substrates and stalls spliceosome assembly at the stage of U2AF function. Computational docking, together with structure-guided mutagenesis, indicates that the compound bridges the tandem U2AF2 RNA recognition motifs via hydrophobic and electrostatic moieties. Cells expressing a cancer-associated U2AF1 mutant are preferentially killed by treatment with the compound. Altogether, our results highlight the potential of trapping early spliceosome assembly as an effective pharmacological means to manipulate pre-mRNA splicing. By extension, we suggest that stabilizing assembly intermediates may offer a useful approach for small-molecule inhibition of macromolecular machines.


Assuntos
Precursores de RNA/efeitos dos fármacos , Splicing de RNA/efeitos dos fármacos , RNA Neoplásico/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Fator de Processamento U2AF/antagonistas & inibidores , Feminino , Células HEK293 , Humanos , Células K562 , Simulação de Acoplamento Molecular , Estrutura Molecular , Precursores de RNA/genética , Splicing de RNA/genética , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo
7.
ACS Chem Biol ; 16(3): 520-528, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33617218

RESUMO

Small molecules that target the spliceosome SF3B complex are potent inhibitors of cancer cell growth. The compounds affect an early stage of spliceosome assembly when U2 snRNP first engages the branch point sequence of an intron. Employing an inactive herboxidiene analog (iHB) as a competitor, we investigated factors that influence inhibitor interactions with SF3B to interfere with pre-mRNA splicing in vitro. Order-of-addition experiments show that inhibitor interactions are long lasting and affected by both temperature and the presence of ATP. Our data are also consistent with the model that not all SF3B conformations observed in structural studies are conducive to productive inhibitor interactions. Notably, SF3B inhibitors do not impact an ATP-dependent rearrangement in U2 snRNP that exposes the branch binding sequence for base pairing. We also report extended structure-activity relationship analysis of the splicing inhibitor herboxidiene. We identified features of the tetrahydropyran ring that mediate its interactions with SF3B and its ability to interfere with splicing. In the context of recent structures of SF3B bound to inhibitor, our results lead us to extend the model for early spliceosome assembly and inhibitor mechanism. We postulate that interactions between a carboxylic acid substituent of herboxidiene and positively charged SF3B1 side chains in the inhibitor binding channel are needed to maintain inhibitor occupancy while counteracting the SF3B transition to a closed state that is required for stable U2 snRNP interactions with the intron.


Assuntos
Álcoois Graxos/química , Fosfoproteínas/agonistas , Fosfoproteínas/antagonistas & inibidores , Piranos/química , Fatores de Processamento de RNA/agonistas , Fatores de Processamento de RNA/antagonistas & inibidores , Splicing de RNA/efeitos dos fármacos , Ribonucleoproteína Nuclear Pequena U2/química , Spliceossomos/química , Trifosfato de Adenosina/química , Sequência de Bases , Sítios de Ligação , Álcoois Graxos/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Piranos/metabolismo , RNA Mensageiro/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo , Relação Estrutura-Atividade , Temperatura
8.
Org Biomol Chem ; 19(6): 1365-1377, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33480941

RESUMO

Herboxidiene is a potent antitumor agent that targets the SF3B subunit of the spliceosome. Herboxidiene possesses a complex structural architecture with nine stereocenters and design of potent less complex structures would be of interest as a drug lead as well as a tool for studying SF3B1 function in splicing. We investigated a number of C-6 modified herboxidiene derivatives in an effort to eliminate this stereocenter and, also to understand the importance of this functionality. The syntheses of structural variants involved a Suzuki-Miyaura cross-coupling reaction as the key step. The functionalized tetrahydrofuran core has been constructed from commercially available optically active tri-O-acetyl-d-glucal. We investigated the effect of these derivatives on splicing chemistry. The C-6 alkene derivative showed very potent splicing inhibitory activity similar to herboxidiene. Furthermore, the C-6 gem-dimethyl derivative also exhibited very potent in vitro splicing inhibitory activity comparable to herboxidiene.


Assuntos
Antineoplásicos/farmacologia , Álcoois Graxos/farmacologia , Piranos/farmacologia , Splicing de RNA/efeitos dos fármacos , Antineoplásicos/síntese química , Álcoois Graxos/síntese química , Células HeLa , Humanos , Piranos/síntese química , Spliceossomos/efeitos dos fármacos , Estereoisomerismo
9.
Cell Chem Biol ; 27(11): 1359-1370.e8, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32649904

RESUMO

Multidrug resistance (MDR) in cancer remains a major challenge for the success of chemotherapy. Natural products have been a rich source for the discovery of drugs against MDR cancers. Here, we applied high-throughput cytotoxicity screening of an in-house natural product library against MDR SGC7901/VCR cells and identified that the cyclodepsipeptide verucopeptin demonstrated notable antitumor potency. Cytological profiling combined with click chemistry-based proteomics revealed that ATP6V1G directly interacted with verucopeptin. ATP6V1G, a subunit of the vacuolar H+-ATPase (v-ATPase) that has not been previously targeted, was essential for SGC7901/VCR cell growth. Verucopeptin exhibited strong inhibition of both v-ATPase activity and mTORC1 signaling, leading to substantial pharmacological efficacy against SGC7901/VCR cell proliferation and tumor growth in vivo. Our results demonstrate that targeting v-ATPase via its V1G subunit constitutes a unique approach for modulating v-ATPase and mTORC1 signaling with great potential for the development of therapeutics against MDR cancers.


Assuntos
Antineoplásicos/farmacologia , Produtos Biológicos/farmacologia , Depsipeptídeos/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Produtos Biológicos/síntese química , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Depsipeptídeos/síntese química , Depsipeptídeos/química , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Subunidades Proteicas/efeitos dos fármacos , Proteômica , ATPases Vacuolares Próton-Translocadoras/metabolismo
10.
J Org Chem ; 85(12): 8111-8120, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32515594

RESUMO

An efficient palladium-free Stille cross-coupling reaction of allylic bromides and functionalized organostannylfuran using catalytic copper halide has been developed. The coupling reaction was optimized using CuI and low catalyst loading (down to 5 mol %). The reaction was conveniently carried out at ambient temperature in the presence of inorganic base to afford the coupling product in good-to-excellent yields. The utility of this reaction was demonstrated in the synthesis of a furan with sensitive functionalities. A sulfolene moiety was utilized as a masking group for the sensitive diene. Noyori asymmetric reduction, Achmatowicz reaction, and Kishi reduction steps converted sulfolene to a highly substituted tetrahydropyran intermediate used in the synthesis of the highly potent antitumor agents, spliceostatins, and their derivatives.


Assuntos
Cobre , Paládio , Catálise
11.
RNA Biol ; 16(10): 1346-1354, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31213125

RESUMO

Structural models of large and dynamic molecular complexes are appearing in increasing numbers, in large part because of recent technical advances in cryo-electron microscopy. However, the inherent complexity of such biological assemblies comprising dozens of moving parts often limits the resolution of structural models and leaves the puzzle as to how each functional configuration transitions to the next. Orthogonal biochemical information is crucial to understanding the molecular interactions that drive those rearrangements. We present a two-step method for chemical probing detected by tandem mass-spectrometry to globally assess the reactivity of lysine residues within purified macromolecular complexes. Because lysine side chains often balance the negative charge of RNA in ribonucleoprotein complexes, the method is especially useful for detecting changes in protein-RNA interactions. By probing the E. coli 30S ribosome subunit, we established that the reactivity pattern of lysine residues quantitatively reflects structure models derived from X-ray crystallography. We also used the strategy to assess differences in three conformations of purified human spliceosomes in the context of recent cryo-electron microscopy models. Our results demonstrate that the probing method yields powerful biochemical information that helps contextualize architectural rearrangements of intermediate resolution structures of macromolecular complexes, often solved in multiple conformations.


Assuntos
Lisina/química , Substâncias Macromoleculares/química , Modelos Moleculares , Conformação Molecular , Acetilação , Cristalografia por Raios X , Humanos , Peptídeos/química , RNA/química , Subunidades Ribossômicas Menores de Bactérias/metabolismo , Spliceossomos/metabolismo , Espectrometria de Massas em Tandem
12.
Org Lett ; 20(22): 7293-7297, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30394756

RESUMO

Spliceostatin A is a potent inhibitor of spliceosomes and exhibits excellent anticancer activity against multiple human cancer cell lines. We describe here the design and synthesis of a stable cyclopropane derivative of spliceostatin A. The synthesis involved a cross-metathesis or a Suzuki cross-coupling reaction as the key step. The functionalized epoxy alcohol ring was constructed from commercially available optically active tri- O-acetyl-d-glucal. The biological properties of the cyclopropyl derivative revealed that it is active in human cells and inhibits splicing in vitro comparable to spliceostatin A.


Assuntos
Antineoplásicos/síntese química , Ciclopropanos/síntese química , Piranos/síntese química , Compostos de Espiro/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ciclopropanos/química , Ciclopropanos/farmacologia , Células HeLa , Humanos , Estrutura Molecular , Piranos/química , Piranos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/farmacologia , Estereoisomerismo
13.
Artigo em Inglês | MEDLINE | ID: mdl-27440103

RESUMO

Small molecule inhibitors that target components of the spliceosome have great potential as tools to probe splicing mechanism and dissect splicing regulatory networks in cells. These compounds also hold promise as drug leads for diseases in which splicing regulation plays a critical role, including many cancers. Because the spliceosome is a complicated and dynamic macromolecular machine comprised of many RNA and protein components, a variety of compounds that interfere with different aspects of spliceosome assembly is needed to probe its function. By screening chemical libraries with high-throughput splicing assays, several labs have added to the collection of splicing inhibitors, although the mechanistic insight into splicing yielded from the initial compound hits is somewhat limited so far. In contrast, SF3B1 inhibitors stand out as a great example of what can be accomplished with small molecule tools. This group of compounds were first discovered as natural products that are cytotoxic to cancer cells, and then later shown to target the core spliceosome protein SF3B1. The inhibitors have since been used to uncover details of SF3B1 mechanism in the spliceosome and its impact on gene expression in cells. Continuing structure activity relationship analysis of the compounds is also making progress in identifying chemical features key to their function, which is critical in understanding the mechanism of SF3B1 inhibition. The knowledge is also important for the design of analogs with new and useful features for both splicing researchers and clinicians hoping to exploit splicing as pressure point to target in cancer therapy. WIREs RNA 2017, 8:e1381. doi: 10.1002/wrna.1381 For further resources related to this article, please visit the WIREs website.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Precursores de RNA/genética , Splicing de RNA/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Spliceossomos/genética , Animais , Humanos
14.
Org Biomol Chem ; 14(23): 5263-71, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27188838

RESUMO

Herboxidiene is a potent inhibitor of spliceosomes. It exhibits excellent anticancer activity against multiple human cancer cell lines. Herein, we describe an enantioselective synthesis of a desmethyl derivative and the corresponding carba-derivatives of herboxidiene. The synthesis involved Suzuki coupling of a vinyl iodide with boronate as the key reaction. For the synthesis of carba-derivatives, the corresponding optically active cyclohexane-1,3-dicarbonyl derivatives were synthesized using an enantioselective desymmetrization of meso-anhydride. The biological properties of these derivatives were evaluated in an in vitro splicing assay.


Assuntos
Desenho de Fármacos , Álcoois Graxos/síntese química , Álcoois Graxos/farmacologia , Piranos/síntese química , Piranos/farmacologia , Splicing de RNA/efeitos dos fármacos , Ácidos Borônicos/química , Técnicas de Química Sintética , Álcoois Graxos/química , Concentração Inibidora 50 , Piranos/química , Estereoisomerismo
15.
RNA ; 22(3): 350-9, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26742993

RESUMO

The protein SF3B1 is a core component of the spliceosome, the large ribonucleoprotein complex responsible for pre-mRNA splicing. Interest in SF3B1 intensified when tumor exome sequencing revealed frequent specific SF3B1 mutations in a variety of neoplasia and when SF3B1 was identified as the target of three different cancer cell growth inhibitors. A better mechanistic understanding of SF3B1's role in splicing is required to capitalize on these discoveries. Using the inhibitor compounds, we probed SF3B1 function in the spliceosome in an in vitro splicing system. Formerly, the inhibitors were shown to block early steps of spliceosome assembly, consistent with a previously determined role of SF3B1 in intron recognition. We now report that SF3B1 inhibitors also interfere with later events in the spliceosome cycle, including exon ligation. These observations are consistent with a requirement for SF3B1 throughout the splicing process. Additional experiments aimed at understanding how three structurally distinct molecules produce nearly identical effects on splicing revealed that inactive analogs of each compound interchangeably compete with the active inhibitors to restore splicing. The competition indicates that all three types of compounds interact with the same site on SF3B1 and likely interfere with its function by the same mechanism, supporting a shared pharmacophore model. It also suggests that SF3B1 inhibition does not result from binding alone, but is consistent with a model in which the compounds affect a conformational change in the protein. Together, our studies reveal new mechanistic insight into SF3B1 as a principal player in the spliceosome and as a target of inhibitor compounds.


Assuntos
Fosfoproteínas/antagonistas & inibidores , Precursores de RNA/genética , Splicing de RNA , RNA Mensageiro/genética , Ribonucleoproteína Nuclear Pequena U2/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Éxons , Humanos , Fatores de Processamento de RNA
16.
Org Lett ; 16(23): 6200-3, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25423085

RESUMO

An enantioselective total synthesis of spliceostatin E has been accomplished. The δ-lactone unit A was constructed from readily available (R)-glycidyl alcohol using a ring-closing olefin metathesis as the key reaction. A cross-metathesis of ring A containing δ-lactone and the functionalized tetrahydropyran B-ring provided spliceostatin E. Our biological evaluation of synthetic spliceostatin E revealed that it does not inhibit splicing in vitro and does not impact speckle morphology in cells. Spliceostatin E was reported to possess potent antitumor activity.


Assuntos
Antineoplásicos/síntese química , Lactonas/síntese química , Lactonas/farmacologia , Piranos/síntese química , Piranos/farmacologia , Pironas/síntese química , Pironas/farmacologia , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Lactonas/química , Estrutura Molecular , Piranos/química , Pironas/química , Compostos de Espiro/química , Estereoisomerismo
17.
J Org Chem ; 79(12): 5697-709, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24873648

RESUMO

FR901464 (1) and spliceostatin A (2) are potent inhibitors of spliceosomes. These compounds have shown remarkable anticancer activity against multiple human cancer cell lines. Herein, we describe efficient, enantioselective syntheses of FR901464, spliceostatin A, six corresponding diastereomers and an evaluation of their splicing activity. Syntheses of spliceostatin A and FR901464 were carried out in the longest linear sequence of 9 and 10 steps, respectively. To construct the highly functionalized tetrahydropyran A-ring, we utilized CBS reduction, Achmatowicz rearrangement, Michael addition, and reductive amination as key steps. The remarkable diastereoselectivity of the Michael addition was specifically demonstrated with different substrates under various reaction conditions. The side chain B was prepared from an optically active alcohol, followed by acetylation and hydrogenation over Lindlar's catalyst. The other densely functionalized tetrahydropyran C-ring was derived from readily available (R)-isopropylidene glyceraldehyde through a route featuring 1,2-addition, cyclic ketalization, and regioselective epoxidation. These fragments were coupled together at a late stage through amidation and cross-metathesis in a convergent manner. Six key diastereomers were then synthesized to probe the importance of specific stereochemical features of FR901464 and spliceostatin A, with respect to their in vitro splicing activity.


Assuntos
Piranos/química , Piranos/síntese química , Piranos/farmacologia , Compostos de Espiro/química , Compostos de Espiro/síntese química , Compostos de Espiro/farmacologia , Alcenos/química , Catálise , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Splicing de RNA , Estereoisomerismo
18.
J Biol Chem ; 289(4): 1938-47, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24302718

RESUMO

Pladienolide B (PB) is a potent cancer cell growth inhibitor that targets the SF3B1 subunit of the spliceosome. There is considerable interest in the compound as a potential chemotherapeutic, as well as a tool to study SF3B1 function in splicing and cancer development. The molecular structure of PB, a bacterial natural product, contains a 12-member macrolide ring with an extended epoxide-containing side chain. Using a novel concise enantioselective synthesis, we created a series of PB structural analogs and the structurally related compound herboxidiene. We show that two methyl groups in the PB side chain, as well as a feature of the macrolide ring shared with herboxidiene, are required for splicing inhibition in vitro. Unexpectedly, we find that the epoxy group contributes only modestly to PB potency and is not absolutely necessary for activity. The orientations of at least two chiral centers off the macrolide ring have no effect on PB activity. Importantly, the ability of analogs to inhibit splicing in vitro directly correlated with their effects in a series of cellular assays. Those effects likely arise from inhibition of some, but not all, endogenous splicing events in cells, as previously reported for the structurally distinct SF3B1 inhibitor spliceostatin A. Together, our data support the idea that the impact of PB on cells is derived from its ability to impair the function of SF3B1 in splicing and also demonstrate that simplification of the PB scaffold is feasible.


Assuntos
Antineoplásicos/farmacologia , Compostos de Epóxi/química , Macrolídeos/química , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/metabolismo , Fosfoproteínas/antagonistas & inibidores , Splicing de RNA/efeitos dos fármacos , Ribonucleoproteína Nuclear Pequena U2/antagonistas & inibidores , Antineoplásicos/química , Células HeLa , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Piranos/química , Piranos/farmacologia , Fatores de Processamento de RNA , Ribonucleoproteína Nuclear Pequena U2/química , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Compostos de Espiro/química , Compostos de Espiro/farmacologia
19.
J Biomol Screen ; 18(9): 1110-20, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23771823

RESUMO

The spliceosome is the macromolecular machine responsible for pre-mRNA splicing, an essential step in eukaryotic gene expression. During splicing, myriad subunits join and leave the spliceosome as it works on the pre-mRNA substrate. Strikingly, there are very few small molecules known to interact with the spliceosome. Splicing inhibitors are needed to capture transient spliceosome conformations and probe important functional components. Such compounds may also have chemotherapeutic applications, as links between splicing and cancer are increasingly uncovered. To identify new splicing inhibitors, we developed a high-throughput assay for in vitro splicing using a reverse transcription followed by quantitative PCR readout. In a pilot screen of 3080 compounds, we identified three small molecules that inhibit splicing in HeLa extract by interfering with different stages of human spliceosome assembly. Two of the compounds similarly affect spliceosomes in yeast extracts, suggesting selective targeting of conserved components. By examining related molecules, we identified chemical features required for the activity of two of the splicing inhibitors. In addition to verifying our assay procedure and paving the way to larger screens, these studies establish new compounds as chemical probes for investigating the splicing machinery.


Assuntos
Ensaios de Triagem em Larga Escala , Precursores de RNA/antagonistas & inibidores , Splicing de RNA/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Spliceossomos/efeitos dos fármacos , Células HeLa , Humanos , Reação em Cadeia da Polimerase , Precursores de RNA/química , Precursores de RNA/metabolismo , Transcrição Reversa , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Bibliotecas de Moléculas Pequenas/química , Spliceossomos/química , Spliceossomos/metabolismo , Relação Estrutura-Atividade
20.
Nucleic Acids Res ; 38(19): 6664-72, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20529876

RESUMO

Pre-mRNA splicing is catalyzed by the large ribonucleoprotein spliceosome. Spliceosome assembly is a highly dynamic process in which the complex transitions through a number of intermediates. Recently, the potent anti-tumor compound Spliceostatin A (SSA) was shown to inhibit splicing and to interact with an essential component of the spliceosome, SF3b. However, it was unclear whether SSA directly impacts the spliceosome and, if so, by what mechanism, which limits interpretation of the drugs influence on splicing. Here, we report that SSA inhibits pre-mRNA splicing by interfering with the spliceosome subsequent to U2 snRNP addition. We demonstrate that SSA inhibition of spliceosome assembly requires ATP, key pre-mRNA splicing sequences and intact U1 and U2 snRNAs. Furthermore all five U snRNAs in addition to the SSA molecule associate with pre-mRNA during SSA inhibition. Kinetic analyses reveal that SSA impedes the A to B complex transition. Remarkably, our data imply that, in addition to its established function in early U2 snRNP recruitment, SF3b plays a role in later maturation of spliceosomes. This work establishes SSA as a powerful tool for dissecting the dynamics of spliceosomes in cells. In addition our data will inform the design of synthetic splicing modulator compounds for targeted anti-tumor treatment.


Assuntos
Piranos/farmacologia , Compostos de Espiro/farmacologia , Spliceossomos/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Células HeLa , Humanos , Precursores de RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U2/metabolismo , Spliceossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA