Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 362: 142677, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38908448

RESUMO

Landfills, especially those poorly managed, can negatively affect the environment and human beings through chemical contamination of soils and waters. This study investigates the soils of a historical municipal solid waste (MSW) landfill situated in the heart of a residential zone in the capital of Slovakia, Bratislava, with an emphasis on metal (loid) contamination and its consequences. Regardless of the depth, many of the soils exhibited high metal (loid) concentrations, mainly Cd, Cu, Pb, Sb, Sn and Zn (up to 24, 2620, 2420, 134, 811 and 6220 mg/kg, respectively), classifying them as extremely contaminated based on the geo-accumulation index (Igeo >5). The stable lead isotopic ratios of the landfill topsoil varied widely (1.1679-1.2074 for 206Pb/207Pb and 2.0573-2.1111 for 208Pb/206Pb) and indicated that Pb contained a natural component and an anthropogenic component, likely municipal solid waste incineration (MSWI) ash and construction waste. Oral bioaccessibility of metal (loid)s in the topsoil was variable with Cd (73.2-106%) and Fe (0.98-2.10%) being the most and least bioaccessible, respectively. The variation of metal (loid) bioaccessibility among the soils could be explained by differences in their geochemical fractionation as shown by positive correlations of bioaccessibility values with the first two fractions of BCR (Community Bureau of Reference) sequential extraction for As, Cd, Mn, Ni, Pb, Sn and Zn. The results of geochemical fractionation coupled with the mineralogical characterisation of topsoil showed that the reservoir of bioaccessible metal (loid)s was calcite and Fe (hydr)oxides. Based on aqua regia metal (loid) concentrations, a non-carcinogenic risk was demonstrated for children (HI = 1.59) but no risk taking into account their bioaccessible concentrations (HI = 0.65). This study emphasises the need for detailed research of the geochemistry of wastes deposited in urban soils to assess the potentially hazardous sources and determine the actual bioaccessibility and human health risks of the accumulated metal (loid)s.

2.
Heliyon ; 9(3): e13605, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36873465

RESUMO

Municipal solid waste incineration (MSWI) is an effective method for reducing the volume/mass of waste. However, MSWI ashes contain high concentrations of many substances, including trace metal (loid)s, that could be released into the environment and contaminate soils and groundwater. In this study, attention was focused on the site near the municipal solid waste incinerator where MSWI ashes are deposited on the surface without any control. Here, combined results (chemical and mineralogical analyses, leaching tests, speciation modelling, groundwater chemistry and human health risk assessment) are presented to assess the impact of MSWI ash on the surrounding environment. The mineralogy of ∼forty years old MSWI ash was diverse, and quartz, calcite, mullite, apatite, hematite, goethite, amorphous glasses and several Cu-bearing minerals (e.g. malachite, brochantite) were commonly detected. In general, the total concentrations of metal (loid)s in MSWI ashes were high, following the order: Zn (6731 mg/kg) > Ba (1969 mg/kg) ≈ Mn (1824 mg/kg) > Cu (1697 mg/kg) > Pb (1453 mg/kg) > Cr (247 mg/kg) > Ni (132 mg/kg) > Sb (59.4 mg/kg) > As (22.9 mg/kg) ≈ Cd (20.6 mg/kg). Cadmium, Cr, Cu, Pb, Sb and Zn exceeded the indication or even intervention criteria for industrial soils defined by the Slovak legislation. Batch leaching experiments with diluted citric and oxalic acids that simulate the leaching of chemical elements under rhizosphere conditions documented low dissolved fractions of metals (0.00-2.48%) in MSWI ash samples, showing their high geochemical stability. Non-carcinogenic and carcinogenic risks were below the threshold values of 1.0 and 1 × 10-6, respectively, with soil ingestion being the most important exposure route for workers. The groundwater chemistry was unaffected by deposited MSWI ashes. This study may be useful in determining the environmental risks of trace metal (loid)s in weathered MSWI ashes that are loosely deposited on the soil surface.

3.
Environ Pollut ; 285: 117268, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964561

RESUMO

Soils containing a large proportion of industrial waste can pose a health risk due to high environmentally available concentrations of toxic metal(loid)s. Nano zero-valent iron (nZVI) and amorphous manganese oxide (AMO) were applied as immobilising amendments (1 wt%) to soils with different industrial origin of As and Sb, and leaching of As, Sb, Pb, and Zn was investigated using a single extraction with deionised water. The different industrial impact was reflected in the mineralogy, chemical composition and pH of these soils. Water-soluble As ratios positively correlated with pH in all experimental treatments. A significant decrease of water-soluble As ratios was observed in all nZVI-amended soils (~65-93% of the control) except for one sample with the lowest solution pH. Nano zero-valent iron was also successful in Sb immobilisation (~76-90% of the control). Highly variable results were obtained for AMO, which only led to a decrease of water-soluble As in soils with solution pH of ≥7 (~70-80% of the control), probably due to lower stability of AMO in acidic conditions. In each case, nZVI was more efficient at decreasing water-soluble As ratios than AMO. Dissolved Pb concentrations remained unchanged after the application of nZVI and AMO, and the decrease of Zn leaching using AMO was controlled mainly by soil pH increase induced by its application. According to the calculated saturation indices, tripuhyite (FeSbO4) was predicted to be the key mineral controlling Sb solubility in mine soils. Secondary Fe (hydr)oxides either originally present or newly formed due to nZVI oxidation were instrumentally identified at different stages of their transformation and metal(loid) retention. To conclude, nZVI is suitable for application to contaminated soils at a wide pH range, while the use of AMO for decreasing As leaching is limited to soils with pH ≥ 7.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Concentração de Íons de Hidrogênio , Resíduos Industriais , Ferro , Chumbo , Manganês , Solo , Poluentes do Solo/análise , Zinco/análise
4.
Environ Geochem Health ; 43(7): 2665-2677, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32700094

RESUMO

This epidemiological study of ecological type deals with the analysis of relationship between drinking water hardness and health status of inhabitants of the Slovak Republic. This relationship was investigated in two groups of more than 50,000 inhabitants living in 53 different municipalities. The first group was supplied with drinking water with low hardness, and the second group was supplied with drinking water with increased hardness. The health status of the population of both groups was monitored by means of health indicators, which represented 15-year average values, for 1994-2008. We investigated four major causes of death, namely cardiovascular, oncological, gastrointestinal and respiratory tract mortality, and evaluated the average life expectancy. The health status of inhabitants supplied with drinking water with increased hardness was significantly better than the health status of people supplied with drinking water with low hardness. For example, the relative mortality for cardiovascular diseases, oncological diseases, digestive tract diseases and respiratory diseases was 56%, 62%, 128% and 121% higher in the population supplied with soft drinking water compared to the population supplied with hard water, respectively. In addition, life expectancy was more than 4.5 years higher in the population supplied with hard drinking water. Our observation confirms the findings of previous studies on relationship between the water hardness and human health.


Assuntos
Água Potável/análise , Nível de Saúde , Poluentes Químicos da Água/análise , Abastecimento de Água/normas , Cidades , Feminino , Dureza , Humanos , Masculino , Eslováquia/epidemiologia
5.
Environ Geochem Health ; 42(11): 3925-3947, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32638253

RESUMO

Today, it is proven that the contaminated urban soils are hazardous for the human health. Soil substrates of playgrounds call for special research as they are places where children are directly exposed to soil contaminants. Therefore, the objective of this work was to measure the pseudo-total contents and bioaccessibility of several metals and metalloids (As, Bi, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sb, Sn, V, Zn) in two grain sizes (< 150 µm and < 50 µm) of playground soils in Bratislava city (the capital of Slovakia). The content of metal(loid)s in the soils was controlled by a number of factors, with their increased contents (above 75% percentile or higher) at sites influenced by point sources of pollution (industry and agriculture) or at old sites located in the city centre. Cobalt, Cr, Fe, Mn, Ni and V had relatively uniform contents in soils compared to the other elements. As regression modelling with a categorical variable confirmed, the age of urban areas influenced the accumulation of As, Bi, Cd, Cu, Hg, Pb, Sb and Sn in playground soils. Exploratory statistical techniques with compositionally transformed data (principal component analysis, cluster analysis and construction of symmetric coordinates for correlation analysis) divided trace elements into the two main groupings, Co, Cr, Fe, Mn, Ni, V and Bi, Cd, Cu, Hg, Pb, Sb, Sn, Zn. Median concentrations of the elements in smaller soil grains (< 50 µm) were significantly higher than in coarser grains (< 150 µm). Cobalt, Cu, Mn, Pb, Sn and Zn had significantly higher bioaccessible proportions (% of the pseudo-total content) in < 50 µm soil size than in < 150 µm; however, the same order of bioaccessibility was achieved in both grain sizes. The highest bioaccessibility had Cd, Cu, Pb and Zn (~ 40% and more), followed by Co, As, Mn, Sb (18-27%), Hg, Ni, Sn (10-12%) and finally Cr, Fe and V (less than 4%). The hazard index and carcinogenic risk values were higher in < 50 µm than in < 150 µm and significantly decreased in the two soil sizes when the bioaccessibility results were included in the health hazard calculation.


Assuntos
Poluentes do Solo/análise , Oligoelementos/análise , Disponibilidade Biológica , Carcinógenos/análise , Criança , Cidades , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Humanos , Metaloides/análise , Metaloides/farmacocinética , Metais/análise , Metais/farmacocinética , Parques Recreativos , Tamanho da Partícula , Eslováquia , Solo/química , Poluentes do Solo/farmacocinética , Poluentes do Solo/toxicidade , Oligoelementos/farmacocinética , Oligoelementos/toxicidade
6.
Environ Monit Assess ; 191(5): 263, 2019 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-30953219

RESUMO

The aims of this study were to investigate the occurrence and distribution of total mercury (Hg) and other trace elements of environmental concern, such as arsenic (As), copper (Cu), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), zinc (Zn) and vanadium (V), in soils from the abandoned Merník cinnabar mine in eastern Slovakia. For this purpose, thirty soil samples from two depth intervals within the mine area (n = 60 soil samples) and additional sixteen soil samples from adjacent areas (n = 25 soil samples) were collected. Total Hg was measured by atomic absorption spectrometry, while As and other metals were analyzed using inductively coupled plasma atomic emission spectrometry. High mercury concentrations (> 100 mg/kg with a maximum of 951 mg/kg) were observed only in surface soils close to mine waste heaps and adits. Otherwise, Hg concentrations in the majority of surface soils were lower (0.14-19.7 mg/kg), however, higher than Hg in soils collected from sites outside the mine area (0.19-6.92 mg/kg) and even considerably higher than Hg in soils at sites not influenced by the Merník mine. Elevated Cr and Ni concentrations in soils regardless of their sampling sites (mean of 276 mg/kg and median of 132 mg/kg for Cr and 168 mg/kg and 81 mg/kg for Ni, respectively) were attributed to the lithology of the area; the soils are underlain by the sediments of the Central Carpathian Palaeogene, containing a detritus of ultrabasic rocks. As our geochemical data are compositional in nature, they were further treated by compositional data analysis (CoDA). Robust principal component analysis (RPCA) applied on centred (clr) log-ratio-transformed data and correlation analysis of compositional parts based on symmetric balances distinguished very well different sources of origin for the chemical elements. The following three element associations were identified: Hg association with the main source in mining/roasting, Cr-Ni association derived from bedrock and As-Cu-Mn-Pb-Zn-V association (natural background and minor sulphides/sulfosalts in mineralized rocks). The values of geoaccumulation index and enrichment factor suggested that concentrations of Hg in the soils were influenced by human industrial activities.


Assuntos
Cromo/análise , Mercúrio/análise , Níquel/análise , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Monitoramento Ambiental , Atividades Humanas , Humanos , Compostos de Mercúrio , Mineração , Eslováquia
7.
Ecotoxicol Environ Saf ; 144: 611-621, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28645424

RESUMO

A total of eighty surface soil samples were collected from public kindergartens and urban parks in the city of Bratislava, and the <150µm soil fraction was evaluated for total concentrations of five metals, Cd, Cu, Hg, Pb and Zn, their oral bioaccessibilities, non-carcinogenic and carcinogenic health risks to children, and lead isotopic composition. The mean metal concentrations in urban soils (0.29, 36.1, 0.13, 30.9 and 113mg/kg for Cd, Cu, Hg, Pb and Zn, respectively) were about two times higher compared with background soil concentrations. The order of bioaccessible metal fractions determined by Simple Bioaccessibility Extraction Test was: Pb (59.9%) > Cu (43.8%) > Cd (40.8%) > Zn (33.6%) > Hg (12.8%). Variations in the bioaccessible metal fractions were mainly related to the total metal concentrations in urban soils. A relatively wide range of lead isotopic ratios in urban soils (1.1598-1.2088 for 206Pb/207Pb isotopic ratio) indicated a combination of anthropogenic and geogenic sources of metals in the soils. Lower values of 206Pb/207Pb isotopic ratio in the city centre and similar spatial distribution of total metal concentrations, together with their increasing total concentrations in soils towards the city centre, showed that traffic and coal combustion in former times were likely the major sources of soil contamination. The non-carcinogenic and carcinogenic health risks to children due to exposure to metals in kindergarten and urban park soils were low, with hazard index and cancer risk values below the threshold values at all studied sites.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Modelos Biológicos , Poluentes do Solo/análise , Solo/química , Oligoelementos/análise , Disponibilidade Biológica , Criança , Cidades , Digestão , Humanos , Metais Pesados/farmacocinética , Medição de Risco , Eslováquia , Poluentes do Solo/farmacocinética , Oligoelementos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA