Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JCI Insight ; 6(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33630765

RESUMO

Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.


Assuntos
Criopreservação , Epigênese Genética , Pulmão/metabolismo , Transcrição Gênica , Metilação de DNA , Expressão Gênica , Humanos , Pulmão/citologia , Análise de Sequência de RNA/métodos , Fluxo de Trabalho
2.
Mol Syst Biol ; 15(12): e8983, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31885201

RESUMO

Arrayed CRISPR-based screens emerge as a powerful alternative to pooled screens making it possible to investigate a wide range of cellular phenotypes that are typically not amenable to pooled screens. Here, we describe a solid-phase transfection platform that enables CRISPR-based genetic screens in arrayed format with flexible readouts. We demonstrate efficient gene knockout upon delivery of guide RNAs and Cas9/guide RNA ribonucleoprotein complexes into untransformed and cancer cell lines. In addition, we provide evidence that our platform can be easily adapted to high-throughput screens and we use this approach to study oncogene addiction in tumor cells. Finally demonstrating that the human primary cells can also be edited using this method, we pave the way for rapid testing of potential targeted therapies.


Assuntos
Edição de Genes/instrumentação , Neoplasias/genética , RNA Guia de Cinetoplastídeos/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Predisposição Genética para Doença , Ensaios de Triagem em Larga Escala , Humanos , Fenótipo , Transfecção
3.
Sci Rep ; 8(1): 13242, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30185810

RESUMO

The DNA methyltransferase DNMT3A R882H mutation is observed in 25% of all AML patients. DNMT3A is active as tetramer and the R882H mutation is located in one of the subunit/subunit interfaces. Previous work has reported that formation of mixed wildtype/R882H complexes leads to a strong loss of catalytic activity observed in in vitro DNA methylation assays (Russler-Germain et al., 2014, Cancer Cell 25:442-454). To investigate this effect further, we have prepared mixed wildtype/R882H DNMT3A complexes by incubation of individually purified subunits of the DNMT3A catalytic domain and full-length DNMT3A2. In addition, we have used a double affinity tag approach and specifically purified mixed catalytic domain complexes formed after co-expression of R882H and wildtype subunits in E. coli cells. Afterwards, we determined the catalytic activity of the mixed complexes and compared it to that of purified complexes only consisting of one subunit type. In both settings, the expected catalytic activities of mixed R882H/wildtype complexes were observed demonstrating an absence of a dominant negative effect of the R882H mutation in purified DNMT3A enzymes. This result suggests that heterocomplex formation of DNMT3A and R882H is unlikely to cause dominant negative effects in human cells as well. The limitations of this conclusion and its implications are discussed.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Mutação , Domínio Catalítico , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Humanos , Modelos Moleculares , Multimerização Proteica
4.
Nucleic Acids Res ; 46(6): 3130-3139, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29518238

RESUMO

The DNMT3A R882H mutation is frequently observed in acute myeloid leukemia (AML). It is located in the subunit and DNA binding interface of DNMT3A and has been reported to cause a reduction in activity and dominant negative effects. We investigated the mechanistic consequences of the R882H mutation on DNMT3A showing a roughly 40% reduction in overall DNA methylation activity. Biochemical assays demonstrated that R882H does not change DNA binding affinity, protein stability or subnuclear distribution of DNMT3A. Strikingly, DNA methylation experiments revealed pronounced changes in the flanking sequence preference of the DNMT3A-R882H mutant. Based on these results, different DNA substrates with selected flanking sequences were designed to be favored or disfavored by R882H. Kinetic analyses showed that the R882H favored substrate was methylated by R882H with 45% increased rate when compared with wildtype DNMT3A, while methylation of the disfavored substrate was reduced 7-fold. Our data expand the model of the potential carcinogenic effect of the R882H mutation by showing CpG site specific activity changes. This result suggests that R882 is involved in the indirect readout of flanking sequence preferences of DNMT3A and it may explain the particular enrichment of the R882H mutation in cancer patients by revealing mutation specific effects.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA/metabolismo , Mutação de Sentido Incorreto , Doença Aguda , Sítios de Ligação/genética , Ilhas de CpG/genética , DNA/química , DNA/genética , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Humanos , Leucemia Mieloide/enzimologia , Leucemia Mieloide/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , Especificidade por Substrato
5.
Nucleic Acids Res ; 45(4): 1703-1713, 2017 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-27899645

RESUMO

DNA methylation plays a critical role in the regulation and maintenance of cell-type specific transcriptional programs. Targeted epigenome editing is an emerging technology to specifically regulate cellular gene expression in order to modulate cell phenotypes or dissect the epigenetic mechanisms involved in their control. In this work, we employed a DNA methyltransferase Dnmt3a-Dnmt3L construct fused to the nuclease-inactivated dCas9 programmable targeting domain to introduce DNA methylation into the human genome specifically at the EpCAM, CXCR4 and TFRC gene promoters. We show that targeting of these loci with single gRNAs leads to efficient and widespread methylation of the promoters. Multiplexing of several guide RNAs does not increase the efficiency of methylation. Peaks of targeted methylation were observed around 25 bp upstream and 40 bp downstream of the PAM site, while 20-30 bp of the binding site itself are protected against methylation. Potent methylation is dependent on the multimerization of Dnmt3a/Dnmt3L complexes on the DNA. Furthermore, the introduced methylation causes transcriptional repression of the targeted genes. These new programmable epigenetic editors allow unprecedented control of the DNA methylation status in cells and will lead to further advances in the understanding of epigenetic signaling.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA/genética , DNA/metabolismo , Endonucleases/metabolismo , Animais , Linhagem Celular Tumoral , Análise por Conglomerados , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/genética , Endonucleases/genética , Epigênese Genética , Epigenômica/métodos , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Modelos Biológicos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Adv Exp Med Biol ; 945: 1-17, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27826832

RESUMO

DNA methylation and DNA methyltransferases (MTases) - the enzymes that introduce the methylation mark into the DNA - have been studied for almost 70 years. In this chapter, we review key developments in the field that led to our current understanding of the structures and mechanisms of DNA MTases and the essential biological role of DNA methylation, including the discovery of DNA methylation and DNA MTases, the cloning and sequence analysis of bacterial and eukaryotic MTases, and the elucidation of their structure, mechanism, and regulation. We describe genetic studies that contributed greatly to the evolving views on the role of DNA methylation in human development and diseases, the invention of methods for the genome-wide analysis of DNA methylation, and the biochemical identification of DNA MTases and the family of TET enzymes, which are involved in DNA demethylation. We finish by highlighting critical questions for the next years of research in the field.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Evolução Molecular , Animais , DNA (Citosina-5-)-Metiltransferases/química , Metilases de Modificação do DNA/química , Humanos , Mamíferos/genética , Oxigenases de Função Mista/genética , Proteínas Proto-Oncogênicas/genética
7.
J Mol Biol ; 427(10): 1903-15, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-25823553

RESUMO

The HELLS (helicase, lymphoid specific, also known as lymphoid-specific helicase) protein is related to the SNF2 (sucrose non-fermentable 2) family of chromatin remodeling ATPases. It is required for efficient DNA methylation in mammals, particularly at heterochromatin-located repetitive sequences. In this study, we investigated the interaction of HELLS with chromatin and used an ATPase-deficient HELLS variant to address the role of ATP hydrolysis in this process. Chromatin fractionation experiments demonstrated that, in the absence of the ATPase activity, HELLS is retained at the nuclear matrix compartment, defined in part by lamin B1. Microscopy studies revealed a stronger association of the ATPase-deficient mutant with heterochromatin. These results were further supported by fluorescence recovery after photobleaching measurements, which showed that, at heterochromatic sites, wild-type HELLS is very dynamic, with a recovery half-time of 0.8s and a mobile protein fraction of 61%. In contrast, the ATPase-deficient mutant displayed 4.5-s recovery half-time and a reduction in the mobile fraction to 30%. We also present evidence suggesting that, in addition to the ATPase activity, a functional H3K9me3 signaling pathway contributes to an efficient release of HELLS from pericentromeric chromatin. Overall, our results show that a functional ATPase activity is not required for the recruitment of HELLS to heterochromatin, but it is important for the release of the enzyme from these sites.


Assuntos
Adenosina Trifosfatases/deficiência , DNA Helicases/metabolismo , Embrião de Mamíferos/metabolismo , Fibroblastos/metabolismo , Heterocromatina/metabolismo , Metiltransferases/fisiologia , Proteínas Mutantes/metabolismo , Proteínas Repressoras/fisiologia , Animais , Western Blotting , Células Cultivadas , DNA Helicases/genética , Metilação de DNA , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Recuperação de Fluorescência Após Fotodegradação , Histonas/metabolismo , Camundongos , Camundongos Knockout , Proteínas Mutantes/genética , Mutação/genética , Transcrição Gênica
8.
Genome Res ; 24(11): 1842-53, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25301795

RESUMO

Post-translational modifications (PTMs) of histones constitute a major chromatin indexing mechanism, and their proper characterization is of highest biological importance. So far, PTM-specific antibodies have been the standard reagent for studying histone PTMs despite caveats such as lot-to-lot variability of specificity and binding affinity. Herein, we successfully employed naturally occurring and engineered histone modification interacting domains for detection and identification of histone PTMs and ChIP-like enrichment of different types of chromatin. Our results demonstrate that histone interacting domains are robust and highly specific reagents that can replace or complement histone modification antibodies. These domains can be produced recombinantly in Escherichia coli at low cost and constant quality. Protein design of reading domains allows for generation of novel specificities, addition of affinity tags, and preparation of PTM binding pocket variants as matching negative controls, which is not possible with antibodies.


Assuntos
Anticorpos/metabolismo , Histonas/metabolismo , Mapeamento de Interação de Proteínas/métodos , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Anticorpos/imunologia , Sítios de Ligação/genética , Western Blotting , Imunoprecipitação da Cromatina , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Células HEK293 , Histonas/imunologia , Humanos , Lisina/metabolismo , Metilação , Peptídeos/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Análise Serial de Proteínas/métodos , Ligação Proteica , Reprodutibilidade dos Testes
9.
J Biol Chem ; 289(43): 29602-13, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25147181

RESUMO

The Dnmt3a DNA methyltransferase has been shown to bind cooperatively to DNA and to form large multimeric protein/DNA fibers. However, it has also been reported to methylate DNA in a processive manner, a property that is incompatible with protein/DNA fiber formation. We show here that the DNA methylation rate of Dnmt3a increases more than linearly with increasing enzyme concentration on a long DNA substrate, but not on a short 30-mer oligonucleotide substrate. We also show that addition of a catalytically inactive Dnmt3a mutant, which carries an amino acid exchange in the catalytic center, increases the DNA methylation rate by wild type Dnmt3a on the long substrate but not on the short one. In agreement with this finding, preincubation experiments indicate that stable protein/DNA fibers are formed on the long, but not on the short substrate. In addition, methylation experiments with substrates containing one or two CpG sites did not provide evidence for a processive mechanism over a wide range of enzyme concentrations. These data clearly indicate that Dnmt3a binds to DNA in a cooperative reaction and that the formation of stable protein/DNA fibers increases the DNA methylation rate. Fiber formation occurs at low µm concentrations of Dnmt3a, which are in the range of Dnmt3a concentrations in the nucleus of embryonic stem cells. Understanding the mechanism of Dnmt3a is of vital importance because Dnmt3a is a hotspot of somatic cancer mutations one of which has been implicated in changing Dnmt3a processivity.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA/metabolismo , Animais , Sequência de Bases , Biocatálise , Núcleo Celular/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Células-Tronco Embrionárias/enzimologia , Fluorescência , Cinética , Camundongos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Motivos de Nucleotídeos/genética , Ligação Proteica , Multimerização Proteica , Análise de Sequência de DNA , Especificidade por Substrato
10.
J Mol Biol ; 425(3): 479-91, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23220192

RESUMO

The C-terminal domain of the Dnmt3a de novo DNA methyltransferase (Dnmt3a-C) forms a complex with the C-terminal domain of Dnmt3L, which stimulates its catalytic activity. We generated and characterized single-chain (sc) fusion proteins of both these domains with linker lengths between 16 and 30 amino acid residues. The purified sc proteins showed about 10-fold higher DNA methylation activities than Dnmt3a-C in vitro and were more active in bacterial cells as well. After fusing the Dnmt3a-3L sc enzyme to an artificial zinc-finger protein targeting the vascular endothelial cell growth factor A (VEGF-A) promoter, we demonstrate successful targeting of DNA methylation to the VEGF-A promoter in human cells and observed that almost complete methylation of 12 CpG sites in the gene promoter could be achieved. Targeted methylation by the Dnmt3a-3L sc enzymes was about twofold higher than that of Dnmt3a-C, indicating that Dnmt3a-3L sc variants are more efficient as catalytic modules in chimeric DNA methyltransfeases than Dnmt3a-C. Targeted methylation of the VEGF-A promoter with the Dnmt3a-3L sc variant led to a strong silencing of VEGF-A expression, indicating that the artificial DNA methylation of an endogenous promoter is a powerful strategy to achieve silencing of the corresponding gene in human cells.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Inativação Gênica , Marcação de Genes/métodos , Fator A de Crescimento do Endotélio Vascular/biossíntese , Linhagem Celular , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA , DNA Metiltransferase 3A , Humanos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
11.
Chembiochem ; 13(1): 157-65, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22170584

RESUMO

DNA methyltransferases (DNMTs) are responsible for DNA methylation, an epigenetic modification involved in gene regulation. Families of conjugates of procainamide, an inhibitor of DNMT1, were conceived and produced by rapid synthetic pathways. Six compounds resulted in potent inhibitors of the murine catalytic Dnmt3A/3L complex and of human DNMT1, at least 50 times greater than that of the parent compounds. The inhibitors showed selectivity for C5 DNA methyltransferases. The cytotoxicity of the inhibitors was validated on two tumour cell lines (DU145 and HCT116) and correlated with the DNMT inhibitory potency. The inhibition potency of procainamide conjugated to phthalimide through alkyl linkers depended on the length of the linker; the dodecane linker was the best.


Assuntos
Antineoplásicos/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Procainamida/análogos & derivados , Procainamida/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferases/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/química , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
12.
Chembiochem ; 12(9): 1337-45, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21633996

RESUMO

DNA methylation is involved in the regulation of gene expression and plays an important role in normal developmental processes and diseases, such as cancer. DNA methyltransferases are the enzymes responsible for DNA methylation on the position 5 of cytidine in a CpG context. In order to identify and characterize novel inhibitors of these enzymes, we developed a fluorescence-based throughput screening by using a short DNA duplex immobilized on 96-well plates. We have screened 114 flavones and flavanones for the inhibition of the murine catalytic Dnmt3a/3L complex and found 36 hits with IC(50) values in the lower micromolar and high nanomolar ranges. The assay, together with inhibition tests on two other methyltransferases, structure-activity relationships and docking studies, gave insights on the mechanism of inhibition. Finally, two derivatives effected zebrafish embryo development, and induced a global demethylation of the genome, at doses lower than the control drug, 5-azacytidine.


Assuntos
DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Desenvolvimento Embrionário/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Peixe-Zebra/embriologia , Animais , Sequência de Bases , Cristalografia por Raios X , DNA (Citosina-5-)-Metiltransferases/química , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Bibliotecas de Moléculas Pequenas/química
13.
FEBS J ; 278(12): 2055-63, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21481189

RESUMO

The Dnmt3a DNA methyltransferase is responsible for establishing DNA methylation patterns during mammalian development. We show here that the mouse Dnmt3a DNA methyltransferase is able to transfer the methyl group from S-adenosyl-l-methionine (AdoMet) to a cysteine residue in its catalytic center. This reaction is irreversible and relatively slow. The yield of auto-methylation is increased by addition of Dnmt3L, which functions as a stimulator of Dnmt3a and enhances its AdoMet binding. Auto-methylation was observed in binary Dnmt3a AdoMet complexes. In the presence of CpG containing dsDNA, which is the natural substrate for Dnmt3a, the transfer of the methyl group from AdoMet to the flipped target base was preferred and auto-methylation was not detected. Therefore, this reaction might constitute a regulatory mechanism which could inactivate unused DNA methyltransferases in the cell, or it could simply be an aberrant side reaction caused by the high methyl group transfer potential of AdoMet. ENZYMES: Dnmt3a is a DNA-(cytosine C5)-methyltransferase, EC 2.1.1.37. STRUCTURED DIGITAL ABSTRACT: • Dnmt3a methylates Dnmt3a by methyltransferase assay (View interaction) • Dnmt3a and DNMT3L methylate Dnmt3a by methyltransferase assay (View interaction).


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , DNA (Citosina-5-)-Metiltransferases/metabolismo , Substituição de Aminoácidos , Animais , Sequência de Bases , Domínio Catalítico , Cisteína/química , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Humanos , Técnicas In Vitro , Cinética , Metilação , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos/genética , Oligodesoxirribonucleotídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Especificidade por Substrato
14.
PLoS One ; 5(8): e12388, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20808780

RESUMO

In mammals DNA methylation occurs at position 5 of cytosine in a CpG context and regulates gene expression. It plays an important role in diseases and inhibitors of DNA methyltransferases (DNMTs)--the enzymes responsible for DNA methylation--are used in clinics for cancer therapy. The most potent inhibitors are 5-azacytidine and 5-azadeoxycytidine. Zebularine (1-(beta-D-ribofuranosyl)-2(1H)- pyrimidinone) is another cytidine analog described as a potent inhibitor that acts by forming a covalent complex with DNMT when incorporated into DNA. Here we bring additional experiments to explain its mechanism of action. First, we observe an increase in the DNA binding when zebularine is incorporated into the DNA, compared to deoxycytidine and 5-fluorodeoxycytidine, together with a strong decrease in the dissociation rate. Second, we show by denaturing gel analysis that the intermediate covalent complex between the enzyme and the DNA is reversible, differing thus from 5-fluorodeoxycytidine. Third, no methylation reaction occurs when zebularine is present in the DNA. We confirm that zebularine exerts its demethylation activity by stabilizing the binding of DNMTs to DNA, hindering the methylation and decreasing the dissociation, thereby trapping the enzyme and preventing turnover even at other sites.


Assuntos
Citidina/análogos & derivados , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Inibidores Enzimáticos/farmacologia , Animais , Azacitidina/análogos & derivados , Azacitidina/química , Azacitidina/farmacologia , Sequência de Bases , Citidina/química , Citidina/farmacologia , DNA/genética , DNA/metabolismo , DNA (Citosina-5-)-Metiltransferases/química , Decitabina , Humanos , Metilação/efeitos dos fármacos , Camundongos
15.
Methods Mol Biol ; 649: 149-61, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20680833

RESUMO

Targeted DNA methylation is a novel and attractive approach for stable silencing of gene expression by epigenetic mechanisms. The potential applications of this concept include cancer treatment, treatment of viral infections and, in general, treatment of any disease that could be attenuated by the stable repression of known target genes. We review the literature on targeted DNA methylation and gene silencing, summarize the achievements and the challenges that remain, and discuss technical issues critical for this approach.


Assuntos
Inativação Gênica/fisiologia , Animais , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Humanos , Engenharia de Proteínas/métodos
16.
Nucleic Acids Res ; 38(13): 4246-53, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20223770

RESUMO

Using peptide arrays and binding to native histone proteins, we show that the ADD domain of Dnmt3a specifically interacts with the H3 histone 1-19 tail. Binding is disrupted by di- and trimethylation of K4, phosphorylation of T3, S10 or T11 and acetylation of K4. We did not observe binding to the H4 1-19 tail. The ADD domain of Dnmt3b shows the same binding specificity, suggesting that the distinct biological functions of both enzymes are not related to their ADD domains. To establish a functional role of the ADD domain binding to unmodified H3 tails, we analyzed the DNA methylation of in vitro reconstituted chromatin with Dnmt3a2, the Dnmt3a2/Dnmt3L complex, and the catalytic domain of Dnmt3a. All Dnmt3a complexes preferentially methylated linker DNA regions. Chromatin substrates with unmodified H3 tail or with H3K9me3 modification were methylated more efficiently by full-length Dnmt3a and full-length Dnmt3a/3L complexes than chromatin trimethylated at H3K4. In contrast, the catalytic domain of Dnmt3a was not affected by the H3K4me3 modification. These results demonstrate that the binding of the ADD domain to H3 tails unmethylated at K4 leads to the preferential methylation of DNA bound to chromatin with this modification state. Our in vitro results recapitulate DNA methylation patterns observed in genome-wide DNA methylation studies.


Assuntos
DNA (Citosina-5-)-Metiltransferases/metabolismo , Histonas/metabolismo , Nucleossomos/enzimologia , Animais , Sítios de Ligação , DNA (Citosina-5-)-Metiltransferases/química , Metilação de DNA , DNA Metiltransferase 3A , Histonas/química , Peptídeos/metabolismo , Estrutura Terciária de Proteína , Xenopus laevis
17.
Nucleic Acids Res ; 36(21): 6656-63, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18945701

RESUMO

The C-terminal domains of Dnmt3a and Dnmt3L form elongated heterotetramers (3L-3a-3a-3L). Analytical ultracentrifugation confirmed the Dnmt3a-C/3L-C complex exists as a 2:2 heterotetramer in solution. The 3a-3a interface is the DNA-binding site, while both interfaces are essential for AdoMet binding and catalytic activity. Hairpin bisulfite analysis shows correlated methylation of two CG sites in a distance of approximately 8-10 bp in the opposite DNA strands, which corresponds to the geometry of the two active sites in one Dnmt3a-C/3L-C tetramer. Correlated methylation was also observed for two CG sites at similar distances in the same DNA strand, which can be attributed to the binding of two tetramers next to each other. DNA-binding experiments show that Dnmt3a-C/3L-C complexes multimerize on the DNA. Scanning force microscopy demonstrates filament formation rather than binding of single tetramers and shows that protein-DNA filament formation leads to a 1.5-fold shortening of the DNA length.


Assuntos
DNA (Citosina-5-)-Metiltransferases/química , Nucleoproteínas/ultraestrutura , Animais , DNA/metabolismo , DNA/ultraestrutura , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , DNA Metiltransferase 3A , Camundongos , Microscopia de Força Atômica , Mutação , S-Adenosilmetionina/metabolismo
18.
Nature ; 452(7183): 45-50, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18322525

RESUMO

Processes that regulate gene transcription are directly under the influence of the genome organization. The epigenome contains additional information that is not brought by DNA sequence, and generates spatial and functional constraints that complement genetic instructions. DNA methylation on CpGs constitutes an epigenetic mark generally correlated with transcriptionally silent condensed chromatin. Replication of methylation patterns by DNA methyltransferases maintains genome stability through cell division. Here we present evidence of an unanticipated dynamic role for DNA methylation in gene regulation in human cells. Periodic, strand-specific methylation/demethylation occurs during transcriptional cycling of the pS2/TFF1 gene promoter on activation by oestrogens. DNA methyltransferases exhibit dual actions during these cycles, being involved in CpG methylation and active demethylation of 5mCpGs through deamination. Inhibition of this process precludes demethylation of the pS2 gene promoter and its subsequent transcriptional activation. Cyclical changes in the methylation status of promoter CpGs may thus represent a critical event in transcriptional achievement.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética , Ativação Transcricional/genética , Proteínas Supressoras de Tumor/genética , Linhagem Celular , Imunoprecipitação da Cromatina , Ilhas de CpG/genética , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA/efeitos dos fármacos , Reparo do DNA , Desaminação , Estrogênios/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Timina DNA Glicosilase/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional/efeitos dos fármacos , Fator Trefoil-1
19.
J Mol Biol ; 357(3): 928-41, 2006 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-16472822

RESUMO

On the basis of amino acid sequence alignments and structural data of related enzymes, we have performed a mutational analysis of 14 amino acid residues in the catalytic domain of the murine Dnmt3a DNA-(cytosine C5)-methyltransferase. The target residues are located within the ten conserved amino acid sequence motifs characteristic for cytosine-C5 methyltransferases and in the putative DNA recognition domain of the enzyme (TRD). Mutant proteins were purified and tested for their catalytic properties and their abilities to bind DNA and AdoMet. We prepared a structural model of Dnmt3a to interpret our results. We demonstrate that Phe50 (motif I) and Glu74 (motif II) are important for AdoMet binding and catalysis. D96A (motif III) showed reduced AdoMet binding but increased activity under conditions of saturation with S-adenosyl-L-methionine (AdoMet), indicating that the contact of Asp96 to AdoMet is not required for catalysis. R130A (following motif IV), R241A and R246A (in the TRD), R292A, and R297A (both located in front of motif X) showed reduced DNA binding. R130A displayed a strong reduction in catalytic activity and a complete change in flanking sequence preferences, indicating that Arg130 has an important role in the DNA interaction of Dnmt3a. R292A also displayed reduced activity and changes in the flanking sequence preferences, indicating a potential role in DNA contacts farther away from the CG target site. N167A (motif VI) and R202A (motif VIII) have normal AdoMet and DNA binding but reduced catalytic activity. While Asn167 might contribute to the positioning of residues from motif VI, according to structural data Arg202 has a role in catalysis of cytosine-C5 methyltransferases. The R295A variant was catalytically inactive most likely because of destabilization of the hinge sub-domain of the protein.


Assuntos
Domínio Catalítico/genética , DNA (Citosina-5-)-Metiltransferases/genética , Região 3'-Flanqueadora/genética , Região 5'-Flanqueadora/genética , Sequência de Aminoácidos , Animais , Clonagem Molecular , DNA (Citosina-5-)-Metiltransferases/isolamento & purificação , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Análise Mutacional de DNA , Humanos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , S-Adenosilmetionina/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA