Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cells ; 12(21)2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37947652

RESUMO

Bexarotene, a drug approved for treatment of cutaneous T-cell lymphoma (CTCL), is classified as a rexinoid by its ability to act as a retinoid X receptor (RXR) agonist with high specificity. Rexinoids are capable of inducing RXR homodimerization leading to the induction of apoptosis and inhibition of proliferation in human cancers. Numerous studies have shown that bexarotene is effective in reducing viability and proliferation in CTCL cell lines. However, many treated patients present with cutaneous toxicity, hypothyroidism, and hyperlipidemia due to crossover activity with retinoic acid receptor (RAR), thyroid hormone receptor (TR), and liver X receptor (LXR) signaling, respectively. In this study, 10 novel analogs and three standard compounds were evaluated side-by-side with bexarotene for their ability to drive RXR homodimerization and subsequent binding to the RXR response element (RXRE). In addition, these analogs were assessed for proliferation inhibition of CTCL cells, cytotoxicity, and mutagenicity. Furthermore, the most effective analogs were analyzed via qPCR to determine efficacy in modulating expression of two critical tumor suppressor genes, ATF3 and EGR3. Our results suggest that these new compounds may possess similar or enhanced therapeutic potential since they display enhanced RXR activation with equivalent or greater reduction in CTCL cell proliferation, as well as the ability to induce ATF3 and EGR3. This work broadens our understanding of RXR-ligand relationships and permits development of possibly more efficacious pharmaceutical drugs. Modifications of RXR agonists can yield agents with enhanced biological selectivity and potency when compared to the parent compound, potentially leading to improved patient outcomes.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Bexaroteno/farmacologia , Bexaroteno/uso terapêutico , Tetra-Hidronaftalenos/farmacologia , Tetra-Hidronaftalenos/uso terapêutico , Linfoma Cutâneo de Células T/metabolismo , Receptores X de Retinoides/metabolismo , Neoplasias Cutâneas/tratamento farmacológico
2.
Food Funct ; 14(23): 10314-10328, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37916395

RESUMO

There is a need to explore combination therapy to improve the efficacy of immunotherapy for colorectal cancer through food probiotics. In this study, extracellular vesicles (EV) derived from Lactobacillus rhamnosus GG (LGG-EV) were successfully isolated. Adjusting the culture temperature to 30 °C led to an elevated LGG-EV yield, and the addition of penicillin resulted in a decrease in particle size. In addition, LGG-EV have better gastrointestinal tract stability in a Ca2+ environment in vivo and in vitro. Oral administration of LGG-EV synergistically improved anti-PD-1 immunotherapy efficacy against colorectal cancer. Mechanistically, LGG-EV modulated intestinal immunity by increasing the CD8+ T/CD4+ T cell ratio in mesenteric lymph nodes and enhancing the ratio of MHC II+ DC cells, CD4+ T cells, and CD8+ T cells in tumor tissues. Meanwhile, the diversity of the gut microbiota and the abundance of beneficial bacteria, such as Lactobacillus, increased in the combined-treatment mice. In addition, there were significant changes in the levels of serum metabolites associated with the microbiota and anti-tumor effects, including uridine, which was elevated by the combination of anti-PD-1 and LGG-EV treatment. Our findings provide theoretical and mechanistic insights into the development of LGG-EV as postbiotics in combination with immune checkpoint inhibitors for cancer therapy.


Assuntos
Neoplasias Colorretais , Vesículas Extracelulares , Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Animais , Linfócitos T CD8-Positivos , Morte Celular , Imunoterapia , Neoplasias Colorretais/tratamento farmacológico
3.
Vitam Horm ; 123: 313-383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37717990

RESUMO

The nuclear vitamin D receptor (VDR) mediates the actions of its physiologic 1,25-dihydroxyvitamin D3 (1,25D) ligand produced in kidney and at extrarenal sites during times of physiologic and cellular stress. The ligand-receptor complex transcriptionally controls genes encoding factors that regulate calcium and phosphate sensing/transport, bone remodeling, immune function, and nervous system maintenance. With the aid of parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), 1,25D/VDR primarily participates in an intricate network of feedback controls that govern extracellular calcium and phosphate concentrations, mainly influencing bone formation and mineralization, ectopic calcification, and indirectly supporting many fundamental roles of calcium. Beyond endocrine and intracrine effects, 1,25D/VDR signaling impacts multiple biochemical phenomena that potentially affect human health and disease, including autophagy, carcinogenesis, cell growth/differentiation, detoxification, metabolic homeostasis, and oxidative stress mitigation. Several health advantages conferred by 1,25D/VDR appear to be promulgated by induction of klotho, an anti-aging renal peptide hormone which functions as a co-receptor for FGF23 and, like 1,25D, regulates nrf2, foxo, mTOR and other cellular protective pathways. Among hundreds of genes for which expression is modulated by 1,25D/VDR either primarily or secondarily in a cell-specific manner, the resulting gene products (in addition to those expressed in the classic skeletal mineral regulatory tissues kidney, intestine, and bone), fall into multiple biochemical categories including apoptosis, cholesterol homeostasis, glycolysis, hypoxia, inflammation, p53 signaling, unfolded protein response and xenobiotic metabolism. Thus, 1,25D/VDR is a bone mineral control instrument that also signals the maintenance of multiple cellular processes in the face of environmental and genetic challenges.


Assuntos
Cálcio , Receptores de Calcitriol , Humanos , Ligantes , Hormônio Paratireóideo , Receptores de Calcitriol/genética
4.
Cancers (Basel) ; 15(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37444542

RESUMO

Small-molecule inhibitors of PD-L1 are postulated to control immune evasion in tumors similar to antibodies that target the PD-L1/PD-1 immune checkpoint axis. However, the identity of targetable PD-L1 inducers is required to develop small-molecule PD-L1 inhibitors. In this study, using chromatin immunoprecipitation (ChIP) assay and siRNA, we demonstrate that vitamin D/VDR regulates PD-L1 expression in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) cells. We have examined whether a VDR antagonist, MeTC7, can inhibit PD-L1. To ensure that MeTC7 inhibits VDR/PD-L1 without off-target effects, we examined competitive inhibition of VDR by MeTC7, utilizing ligand-dependent dimerization of VDR-RXR, RXR-RXR, and VDR-coactivators in a mammalian 2-hybrid (M2H) assay. MeTC7 inhibits VDR selectively, suppresses PD-L1 expression sparing PD-L2, and inhibits the cell viability, clonogenicity, and xenograft growth of AML cells. MeTC7 blocks AML/mesenchymal stem cells (MSCs) adhesion and increases the efferocytotic efficiency of THP-1 AML cells. Additionally, utilizing a syngeneic colorectal cancer model in which VDR/PD-L1 co-upregulation occurs in vivo under radiation therapy (RT), MeTC7 inhibits PD-L1 and enhances intra-tumoral CD8+T cells expressing lymphoid activation antigen-CD69. Taken together, MeTC7 is a promising small-molecule inhibitor of PD-L1 with clinical potential.

5.
Cancer Epidemiol Biomarkers Prev ; 32(8): 1061-1068, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37257199

RESUMO

BACKGROUND: Observational studies show high prediagnosis 25-hydroxyvitamin D is associated with lower mortality after colorectal cancer diagnosis. Results from clinical trials suggest vitamin D supplementation may improve outcomes among patients with colorectal cancer. Most studies included few Black Americans, who typically have lower 25-hydroxyvitamin D. We evaluated associations between serum 25-hydroxyvitamin D and mortality after colorectal cancer diagnosis among Black American cases. METHODS: Data arose from 218 Black Americans from the Southern Community Cohort Study diagnosed with colorectal cancer during follow-up (age 40-79 at enrollment). Prediagnostic 25-hydroxyvitamin D was measured at enrollment and categorized as deficient (<12 ng/mL), insufficient (12-19.9 ng/mL), or sufficient (≥20 ng/mL). Mortality was determined from the National Death Index. Cox proportional hazards were used to estimate HRs and 95% confidence intervals (CI) for associations between 25-hydroxyvitamin D and mortality. RESULTS: As a continuous exposure, higher 25-hydroxyvitamin D was associated with overall mortality [HR = 0.79 (0.65-0.96) per-SD increase, Ptrend = 0.02] and colorectal cancer-specific mortality [HR = 0.83 (0.64-1.08), Ptrend = 0.16]. For overall mortality, associations were strongest among females [HR = 0.65 (0.42-0.92)], current smokers [HR = 0.61 (0.38-0.98)], and obese participants [HR = 0.47 (0.29-0.77)]. Compared with those with deficiency, participants with sufficient 25-hydroxyvitamin D had lower overall mortality after multivariable adjustment [HR: 0.61 (0.37-1.01)]. CONCLUSIONS: Prediagnosis 25-hydroxyvitamin D is inversely associated with overall and colorectal cancer-specific mortality among Black Americans with colorectal cancer. Correcting vitamin D deficiency may improve survival of these patients, particularly for obese individuals and smokers. IMPACT: Our results support including more Black Americans in trials of vitamin D supplementations to improve colorectal cancer outcomes.


Assuntos
Neoplasias Colorretais , Deficiência de Vitamina D , Adulto , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Negro ou Afro-Americano , Estudos de Coortes , Obesidade , Vitamina D , Masculino
6.
Int J Mol Sci ; 23(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36555852

RESUMO

Bexarotene is an FDA-approved drug for the treatment of cutaneous T-cell lymphoma (CTCL); however, its use provokes or disrupts other retinoid-X-receptor (RXR)-dependent nuclear receptor pathways and thereby incites side effects including hypothyroidism and raised triglycerides. Two novel bexarotene analogs, as well as three unique CD3254 analogs and thirteen novel NEt-TMN analogs, were synthesized and characterized for their ability to induce RXR agonism in comparison to bexarotene (1). Several analogs in all three groups possessed an isochroman ring substitution for the bexarotene aliphatic group. Analogs were modeled for RXR binding affinity, and EC50 as well as IC50 values were established for all analogs in a KMT2A-MLLT3 leukemia cell line. All analogs were assessed for liver-X-receptor (LXR) activity in an LXRE system to gauge the potential for the compounds to provoke raised triglycerides by increasing LXR activity, as well as to drive LXRE-mediated transcription of brain ApoE expression as a marker for potential therapeutic use in neurodegenerative disorders. Preliminary results suggest these compounds display a broad spectrum of off-target activities. However, many of the novel compounds were observed to be more potent than 1. While some RXR agonists cross-signal the retinoic acid receptor (RAR), many of the rexinoids in this work displayed reduced RAR activity. The isochroman group did not appear to substantially reduce RXR activity on its own. The results of this study reveal that modifying potent, selective rexinoids like bexarotene, CD3254, and NEt-TMN can provide rexinoids with increased RXR selectivity, decreased potential for cross-signaling, and improved anti-proliferative characteristics in leukemia models compared to 1.


Assuntos
Leucemia , Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Humanos , Bexaroteno/farmacologia , Receptores X de Retinoides/metabolismo , Tetra-Hidronaftalenos/farmacologia , Receptores X do Fígado , Retinoides/farmacologia , Triglicerídeos
7.
J Med Chem ; 65(8): 6039-6055, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35404047

RESUMO

Vitamin-D receptor (VDR) mRNA is overexpressed in neuroblastoma and carcinomas of lung, pancreas, and ovaries and predicts poor prognoses. VDR antagonists may be able to inhibit tumors that overexpress VDR. However, the current antagonists are arduous to synthesize and are only partial antagonists, limiting their use. Here, we show that the VDR antagonist MeTC7 (5), which can be synthesized from 7-dehydrocholesterol (6) in two steps, inhibits VDR selectively, suppresses the viability of cancer cell-lines, and reduces the growth of the spontaneous transgenic TH-MYCN neuroblastoma and xenografts in vivo. The VDR selectivity of 5 against RXRα and PPAR-γ was confirmed, and docking studies using VDR-LBD indicated that 5 induces major changes in the binding motifs, which potentially result in VDR antagonistic effects. These data highlight the therapeutic benefits of targeting VDR for the treatment of malignancies and demonstrate the creation of selective VDR antagonists that are easy to synthesize.


Assuntos
Neuroblastoma , Receptores de Calcitriol , Animais , Animais Geneticamente Modificados , Xenoenxertos , Humanos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/metabolismo , Vitaminas
8.
Front Immunol ; 13: 746484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35154092

RESUMO

Altering T cell trafficking to mucosal regions can enhance immune responses towards pathogenic infections and cancers at these sites, leading to better outcomes. All-trans-retinoic acid (ATRA) promotes T cell migration to mucosal surfaces by inducing transcription of the mucosal-homing receptors CCR9 and α4ß7 via binding to retinoic acid receptors (RARs), which heterodimerize with retinoid X receptors (RXRs) to function. However, the unstable nature and toxicity of ATRA limit its use as a widespread treatment modality for mucosal diseases. Therefore, identifying alternatives that could reduce or eliminate the use of ATRA are needed. Rexinoids are synthetically derived compounds structurally similar to ATRA. Originally named for their ability to bind RXRs, rexinoids can enhance RAR-mediated gene transcription. Furthermore, rexinoids are more stable than ATRA and possess an improved safety profile, making them attractive candidates for use in clinical settings. Here we show that select novel rexinoids act as ATRA mimics, as they cause increased CCR9 and α4ß7 expression and enhanced migration to the CCR9 ligand, CCL25 in vitro, even in the absence of ATRA. Conversely, other rexinoids act synergistically with ATRA, as culturing cells with suboptimal doses of both compounds resulted in CCR9 expression and migration to CCL25. Overall, our findings show that rexinoids can be used independently or synergistically with ATRA to promote mucosal homing of T cells in vitro, and lends support for the prospective clinical use of these compounds in immunotherapeutic approaches for pathogenic infections or cancers at mucosal surfaces.


Assuntos
Movimento Celular/efeitos dos fármacos , Integrinas/genética , Receptores CCR/genética , Linfócitos T/efeitos dos fármacos , Tretinoína/farmacologia , Animais , Feminino , Integrinas/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Mucosa/metabolismo , Receptores CCR/imunologia , Linfócitos T/imunologia
9.
Sci Rep ; 12(1): 293, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34997154

RESUMO

Rexinoids are ligands which activate retinoid X receptors (RXRs), regulating transcription of genes involved in cancer-relevant processes. Rexinoids have anti-neoplastic activity in multiple preclinical studies. Bexarotene, used to treat cutaneous T cell lymphoma, is the only FDA-approved rexinoid. Bexarotene has also been evaluated in clinical trials for lung and metastatic breast cancer, wherein subsets of patients responded despite advanced disease. By modifying structures of known rexinoids, we can improve potency and toxicity. We previously screened a series of novel rexinoids and selected V-125 as the lead based on performance in optimized in vitro assays. To validate our screening paradigm, we tested V-125 in clinically relevant mouse models of breast and lung cancer. V-125 significantly (p < 0.001) increased time to tumor development in the MMTV-Neu breast cancer model. Treatment of established mammary tumors with V-125 significantly (p < 0.05) increased overall survival. In the A/J lung cancer model, V-125 significantly (p < 0.01) decreased number, size, and burden of lung tumors. Although bexarotene elevated triglycerides and cholesterol in these models, V-125 demonstrated an improved safety profile. These studies provide evidence that our screening paradigm predicts novel rexinoid efficacy and suggest that V-125 could be developed into a new cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Receptores X de Retinoides/agonistas , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Transgênicos , Receptores X de Retinoides/metabolismo , Transdução de Sinais , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
10.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-34830251

RESUMO

Five novel analogs of 6-(ethyl)(4-isobutoxy-3-isopropylphenyl)amino)nicotinic acid-or NEt-4IB-in addition to seven novel analogs of 4-[1-(3,5,5,8,8-pentamethyl-5,6,7,8-tetrahydro-2-naphthyl)ethynyl]benzoic acid (bexarotene) were prepared and evaluated for selective retinoid-X-receptor (RXR) agonism alongside bexarotene (1), a FDA-approved drug for cutaneous T-cell lymphoma (CTCL). Bexarotene treatment elicits side-effects by provoking or disrupting other RXR-dependent pathways. Analogs were assessed by the modeling of binding to RXR and then evaluated in a human cell-based RXR-RXR mammalian-2-hybrid (M2H) system as well as a RXRE-controlled transcriptional system. The analogs were also tested in KMT2A-MLLT3 leukemia cells and the EC50 and IC50 values were determined for these compounds. Moreover, the analogs were assessed for activation of LXR in an LXRE system as drivers of ApoE expression and subsequent use as potential therapeutics in neurodegenerative disorders, and the results revealed that these compounds exerted a range of differential LXR-RXR activation and selectivity. Furthermore, several of the novel analogs in this study exhibited reduced RARE cross-signaling, implying RXR selectivity. These results demonstrate that modification of partial agonists such as NEt-4IB and potent rexinoids such as bexarotene can lead to compounds with improved RXR selectivity, decreased cross-signaling of other RXR-dependent nuclear receptors, increased LXRE-heterodimer selectivity, and enhanced anti-proliferative potential in leukemia cell lines compared to therapeutics such as 1.


Assuntos
Antineoplásicos/farmacologia , Apolipoproteínas E/genética , Bexaroteno/farmacologia , Leucócitos/efeitos dos fármacos , Ácidos Nicotínicos/farmacologia , Receptor X Retinoide alfa/agonistas , Animais , Antineoplásicos/síntese química , Apolipoproteínas E/metabolismo , Bexaroteno/análogos & derivados , Bexaroteno/síntese química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Expressão Gênica , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Ácidos Nicotínicos/síntese química , Receptor X Retinoide alfa/genética , Receptor X Retinoide alfa/metabolismo , Relação Estrutura-Atividade
11.
ACS Chem Neurosci ; 12(5): 857-871, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33570383

RESUMO

There is considerable interest in identifying effective and safe drugs for neurodegenerative disorders. Cell culture and animal model work have demonstrated that modulating gene expression through RXR-mediated pathways may mitigate or reverse cognitive decline. However, because RXR is a dimeric partner for several transcription factors, activating off-target transcription is a concern with RXR ligands (rexinoids). This off-target gene modulation leads to unwanted side effects that can include low thyroid function and significant hyperlipidemia. There is a need to develop rexinoids that have binding specificity for subsets of RXR heterodimers, to drive desired gene modulation, but that do not induce spurious effects. Herein, we describe experiments in which we analyze a series of novel and previously reported rexinoids for their ability to modulate specific gene pathways implicated in neurodegenerative disorders employing a U87 cell culture model. We demonstrate that, compared to the FDA-approved rexinoid bexarotene (1), several of these compounds are equally or more effective at stimulating gene expression via LXREs or Nurr1/NBREs and are superior at inducing ApoE and/or tyrosine hydroxylase (TH) gene and protein expression, including analogs 8, 9, 13, 14, 20, 23, and 24, suggesting a possible therapeutic role for these compounds in Alzheimer's or Parkinson's disease (PD). A subset of these potent RXR agonists can synergize with a presumed Nurr1 ligand and antimalarial drug (amodiaquine) to further enhance Nurr1/NBREs-directed transcription. This novel discovery has potential clinical implications for treatment of PD since it suggests that the combination of an RXR agonist and a Nurr1 ligand can significantly enhance RXR-Nurr1 heterodimer activity and drive enhanced therapeutic expression of the TH gene to increase endogenous synthesis of dopamine. These data indicate that is it possible and prudent to develop novel rexinoids for testing of gene expression and side effect profiles for use in potential treatment of neurodegenerative disorders, as individual rexinoids can have markedly different gene expression profiles but similar structures.


Assuntos
Apolipoproteínas E , Glioblastoma , Receptores X de Retinoides/agonistas , Tirosina 3-Mono-Oxigenase , Linhagem Celular Tumoral , Humanos , Transdução de Sinais
12.
J Gastrointest Cancer ; 52(3): 940-946, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32918272

RESUMO

PURPOSE: Prior work has shown that higher circulating concentrations of fibroblast growth factor-21 (FGF-21) are associated with an increased likelihood of developing colorectal cancer. We conducted a prospective study to assess the relationship between circulating FGF-21 and odds of developing early neoplastic lesions in the colorectum. METHODS: A total of 94 study participants were included from the ursodeoxycholic acid (UDCA) trial, a phase III, randomized, double-blind, placebo-controlled clinical trial of the effect of 8-10 mg/kg of body weight UDCA vs. placebo. Logistic regression analyses were conducted to evaluate the association between baseline FGF-21 concentrations and odds of developing a metachronous adenoma. RESULTS: Of the characteristics compared across tertiles of FGF-21 concentrations, including age, race, sex, BMI, and other variables, only a previous personal history of colorectal polyps prior to entry into the UDCA trial was statistically significantly related to FGF-21 levels, with a proportion of 26.7%, 56.7%, and 50.0% across the first, second, and third tertiles, respectively (p < 0.05). Higher circulating concentrations of FGF-21 were statistically significantly associated with greater odds of developing a metachronous colorectal adenoma. After adjusting for potential confounders and when compared with the lowest tertile of FGF-21, the adjusted ORs (95% CIs) for metachronous colorectal adenoma in the second and third tertiles were 4.72 (95% CI, 1.42-15.72) and 3.82 (95% CI, 1.15-12.68), respectively (p trend < 0.05). CONCLUSION: Our results reveal for the first time that, in addition to a recently discovered association with colorectal cancer, circulating FGF-21 concentrations are significantly and directly associated with odds of developing metachronous colorectal adenoma.


Assuntos
Adenoma/sangue , Neoplasias Colorretais/sangue , Fatores de Crescimento de Fibroblastos/sangue , Segunda Neoplasia Primária/sangue , Adenoma/tratamento farmacológico , Adenoma/patologia , Idoso , Idoso de 80 Anos ou mais , Arizona , Colagogos e Coleréticos/uso terapêutico , Ensaios Clínicos Fase III como Assunto , Pólipos do Colo/sangue , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Segunda Neoplasia Primária/tratamento farmacológico , Segunda Neoplasia Primária/patologia , Estudos Prospectivos , Ensaios Clínicos Controlados Aleatórios como Assunto , Fatores de Risco , Ácido Ursodesoxicólico/uso terapêutico
13.
Chem Biol Drug Des ; 95(5): 493-502, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31444840

RESUMO

Poria cocos is an edible and medicinal fungus that is widely used in Traditional Chinese Medicines as well as in modern applications. Retinoid X receptor (RXR) occupies a central place in nuclear receptor signaling, and a pharmacological RXR-dependent pathway is involved in myeloid cell function. Here, structural information for 82 triterpenes from P. cocos and 17 known RXR agonists was collected in a compound library and retrieved for a molecular docking study. Three triterpenes, 16α-hydroxytrametenolic acid (HTA), pachymic acid (PA), and polyporenic acid C (PPAC), were identified as novel RXR-specific agonists based on luciferase reporter assays and in silico evidence. Treatment with HTA, PA, and PPAC significantly induced differentiation of the human promyelocytic leukemia cell line HL-60 with EC50 values of 21.0 ± 0.52, 6.7 ± 0.37, and 9.4 ± 0.65 µM, respectively. These effects were partly blocked by the RXR antagonist UVI3003, suggesting that an RXR-dependent pathway may play an important role in their anti-acute promyelocytic leukemia (APL) effects. Taken together, triterpenes from P. cocos are revealed as naturally occurring RXR selective agonists with the potential for anti-cancer activity. These results suggest a novel approach to the treatment or prevention of APL.


Assuntos
Receptores X de Retinoides/agonistas , Triterpenos/química , Wolfiporia/química , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Células HL-60 , Humanos , Lanosterol/análogos & derivados , Lanosterol/química , Lanosterol/metabolismo , Lanosterol/farmacologia , Ligantes , Simulação de Acoplamento Molecular , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo , Receptores X de Retinoides/metabolismo , Termodinâmica , Triterpenos/isolamento & purificação , Triterpenos/metabolismo , Triterpenos/farmacologia , Wolfiporia/metabolismo
14.
J Agric Food Chem ; 67(39): 10871-10879, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31517482

RESUMO

This study evaluated the effect of triterpenoids from edible mushroom Poria cocos on intestinal epithelium integrity and revealed the transcriptional regulatory pathways that underpin restorative mechanisms in the gut. Based on computational docking studies, transcriptional activation experiments and glucocorticoid receptor (GR) protein immunofluorescence localization assays in cultured cells, 16α-hydroxytrametenolic acid (HTA) was discovered as a novel GR agonist in this study. HTA ameliorates TNF-α-induced Caco-2 monolayer intestinal epithelial barrier damage and suppressed activation of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt), which attenuated downstream IκB and nuclear factor kappa-B (NF-κB) phosphorylation through GR activation. Moreover, HTA prevented NF-κB translocation into the nucleus and binding to its cis-element and suppressed lipopolysaccharide-induced downstream NO production and pro-inflammatory cytokines at both protein and mRNA expression levels. In conclusion, HTA from P. cocos improves intestinal barrier function through a GR-mediated PI3K/Akt/NF-κB signaling pathway and may be potentially exploited as a supportive dietary therapeutic strategy for restoring gut health.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Glucocorticoides/metabolismo , Triterpenos/farmacologia , Wolfiporia/química , Células CACO-2 , Humanos , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Mucosa Intestinal/metabolismo , Simulação de Acoplamento Molecular , NF-kappa B/genética , Fosfatidilinositol 3-Quinase/genética , Fosforilação , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de Glucocorticoides/genética , Transdução de Sinais/efeitos dos fármacos , Triterpenos/química , Verduras/química
15.
Methods Mol Biol ; 2019: 109-121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359392

RESUMO

The methods described in this chapter concern procedures for the design, synthesis, and in vitro biological evaluation of an array of potent retinoid-X-receptor (RXR) agonists employing 6-(ethyl(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN), and recently reported NEt-TMN analogs, as a case study. These methods have been extensively applied beyond the present case study to generate several analogs of other potent RXR agonists (rexinoids), particularly the RXR agonist known as bexarotene (Bex), a Food and Drug Administration (FDA) approved drug for cutaneous T-cell lymphoma that is also often prescribed, off-label, for breast, lung, and other human cancers. Common side effects with Bex treatment include hypertriglyceridemia and hypothyroidism, because of off-target activation or inhibition of other nuclear receptor pathways impacted by RXR. Because rexinoids are often selective for RXR, versus the retinoic-acid-receptor (RAR), cutaneous toxicity is often avoided as a side effect for rexinoid treatment. Several other potent RXR agonists, and their analogs, have been reported in the literature and rigorously evaluated (often in comparison to Bex) as potential cancer therapeutics with unique activity and side-effect profiles. Some of the more prominent examples include LGD100268, CD3254, and 9-cis-UAB30, to name only a few. Hence, the methods described herein are more widely applicable to a diverse array of RXR agonists.In terms of design, the structure-activity relationship (SAR) study is usually performed by modifying three distinct areas of the rexinoid base structure, either of the nonpolar or polar sides of the rexinoid and/or the linkage that joins them. For the synthesis of the modified base-structure analogs, often identical synthetic strategies used to access the base-structure are applied; however, reasonable alternative synthetic routes may need to be explored if the modified analog intermediates encounter bottlenecks where yields are negligible for a given step in the base-structure route. In fact, this particular problem was encountered and successfully resolved in our case study for generating an array of NEt-TMN analogs.


Assuntos
Antineoplásicos/síntese química , Receptores X de Retinoides/agonistas , Tetra-Hidronaftalenos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Humanos , Estrutura Molecular , Receptores X de Retinoides/química , Relação Estrutura-Atividade , Tetra-Hidronaftalenos/química , Tetra-Hidronaftalenos/farmacologia
16.
Methods Mol Biol ; 2019: 95-108, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31359391

RESUMO

This chapter outlines the materials, methods, and procedures for the in vitro biological evaluation of retinoid-X-receptor (RXR) agonists including 6-(ethyl(5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)amino)nicotinic acid (NEt-TMN), as well as several NEt-TMN analog compounds recently reported by our group. These methods have general applicability beyond this NEt-TMN case study, and can be employed to characterize and biologically evaluate other putative RXR agonists (rexinoids), and benchmarked against perhaps the most common rexinoid known as bexarotene (Bex), a drug awarded FDA approval for the treatment of cutaneous T-cell lymphoma in 1999 but that is also prescribed for non-small cell lung cancer and continues to be explored in multiple human cancer types. The side-effect profile of Bex treatment includes hypothyroidism and hypertriglyceridemia arising from the inhibition or activation of additional nuclear receptors that partner with RXR. Because rexinoids often exhibit selectivity for RXR activation, versus activating the retinoic-acid-receptor (RAR), rexinoid treatment avoids the cutaneous toxicity commonly associated as a side effect with retinoids. There are many examples of other potent rexinoids, where biological evaluation has contributed useful insight into qSAR studies on these compounds, often also benchmarked to Bex, as potential treatments for cancer. Because of differential pleiotropy in other pathways, even closely related rexinoids display unique side-effect and activity profiles. Notable examples of potent rexinoids in addition to Bex and NEt-TMN include CD3254, LGD100268, and 9-cis-UAB30. Indeed, the methods described herein to evaluate NEt-TMN and analogous rexinoids are generally applicable to a wider variety of potent, moderate, and even weak RXR ligands.In terms of in vitro biological evaluation, methods for a rapid and preliminary assessment of rexinoid activity are described by employing a biologically relevant, RXR-responsive element (RXRE)-mediated transcription assay in mammalian cells. In addition, a second, more sensitive assay is also detailed that utilizes activation of RXR-RXR homodimers in the context of a mammalian two-hybrid (M2H) luciferase assay. Methods for applying the M2H assay at different rexinoid concentrations are further described for the determination of EC50 values for rexinoids from dose-response curves.


Assuntos
Receptor X Retinoide alfa/agonistas , Tetra-Hidronaftalenos/farmacologia , Ácidos Cumáricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica , Células HEK293 , Humanos , Retinoides/farmacologia , Transdução de Sinais
17.
Cancer Prev Res (Phila) ; 12(4): 211-224, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30760500

RESUMO

Rexinoids, selective ligands for retinoid X receptors (RXR), have shown promise in preventing many types of cancer. However, the limited efficacy and undesirable lipidemic side-effects of the only clinically approved rexinoid, bexarotene, drive the search for new and better rexinoids. Here we report the evaluation of novel pyrimidinyl (Py) analogues of two known chemopreventive rexinoids, bexarotene (Bex) and LG100268 (LG268) in a new paradigm. We show that these novel derivatives were more effective agents than bexarotene for preventing lung carcinogenesis induced by a carcinogen. In addition, these new analogues have an improved safety profile. PyBex caused less elevation of plasma triglyceride levels than bexarotene, while PyLG268 reduced plasma cholesterol levels and hepatomegaly compared with LG100268. Notably, this new paradigm mechanistically emphasizes the immunomodulatory and anti-inflammatory activities of rexinoids. We reveal new immunomodulatory actions of the above rexinoids, especially their ability to diminish the percentage of macrophages and myeloid-derived suppressor cells in the lung and to redirect activation of M2 macrophages. The rexinoids also potently inhibit critical inflammatory mediators including IL6, IL1ß, CCL9, and nitric oxide synthase (iNOS) induced by lipopolysaccharide. Moreover, in vitro iNOS and SREBP (sterol regulatory element-binding protein) induction assays correlate with in vivo efficacy and toxicity, respectively. Our results not only report novel pyrimidine derivatives of existing rexinoids, but also describe a series of biological screening assays that will guide the synthesis of additional rexinoids. Further progress in rexinoid synthesis, potency, and safety should eventually lead to a clinically acceptable and useful new drug for patients with cancer.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Tetra-Hidronaftalenos/farmacologia , Animais , Apoptose , Bexaroteno/farmacologia , Proliferação de Células , Feminino , Humanos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos A , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Data Brief ; 20: 1797-1803, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30294626

RESUMO

This article presents the experimental data supporting analysis of differential gene expression of human cutaneous T cell lymphoma (CTCL) cell culture cells (Hut78) treated with bexarotene or a variety of rexinoids, in conjunction with "A Novel Gene Expression Analytics-based Approach to Structure Aided Design of Rexinoids for Development as Next-Generation Cancer Therapeutics" (Hanish et al. 2018). Data presented here include microarray gene expression analysis of a subset of genes. A novel method for analyzing gene expression in the context of a model of ligand mechanism, called the Divergence Score, is described. Analysis to identify the presence of potential retinoid response elements in putative promoter regions of the study genes is also presented.

19.
Int J Mol Sci ; 19(6)2018 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-29914183

RESUMO

Non-melanoma skin cancers (NMSCs) are the leading cause of skin cancer-related morbidity and mortality. Effective strategies are needed to control NMSC occurrence and progression. Non-toxic, plant-derived extracts have been shown to exert multiple anti-cancer effects. Graviola (Annona muricata), a tropical fruit-bearing plant, has been used in traditional medicine against multiple human diseases including cancer. The current study investigated the effects of graviola leaf and stem extract (GLSE) and its solvent-extracted fractions on two human NMSC cell lines, UW-BCC1 and A431. GLSE was found to: (i) dose-dependently suppress UW-BCC1 and A431 cell growth, motility, wound closure, and clonogenicity; (ii) induce G0/G1 cell cycle arrest by downregulating cyclin/cdk factors while upregulating cdk inhibitors, and (iii) induce apoptosis as evidenced by cleavage of caspases-3, -8 and PARP. Further, GLSE suppressed levels of activated hedgehog (Hh) pathway components Smo, Gli 1/2, and Shh while inducing SuFu. GLSE also decreased the expression of pro-apoptotic protein Bax while decreasing the expression of the anti-apoptotic protein Bcl-2. We determined that these activities were concentrated in an acetogenin/alkaloid-rich dichloromethane subfraction of GLSE. Our data identify graviola extracts and their constituents as promising sources for new chemopreventive and therapeutic agent(s) to be further developed for the control of NMSCs.


Assuntos
Annona/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Neoplasias Cutâneas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Transdução de Sinais , Ensaio Tumoral de Célula-Tronco
20.
Steroids ; 135: 36-49, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29704526

RESUMO

Rexinoids are powerful ligands that bind to retinoid-X-receptors (RXRs) and show great promise as therapeutics for a wide range of diseases, including cancer. However, only one rexinoid, bexarotene (Targretin TM) has been successfully transitioned from the bench to the clinic and used to treat cutaneous T-cell lymphoma (CTCL). Our goal is to develop novel potent rexinoids with a less untoward side effect profile than bexarotene. To this end, we have synthesized a wide array of rexinoids with EC50 values and biological activity similar to bexarotene. In order to determine their suitability for additional downstream analysis, and to identify potential candidate analogs for clinical translation, we treated human CTCL cells in culture and employed microarray technology to assess gene expression profiles. We analyzed twelve rexinoids and found they could be stratified into three distinct categories based on their gene expression: similar to bexarotene, moderately different from bexarotene, and substantially different from bexarotene. Surprisingly, small changes in the structure of the bexarotene parent compound led to marked differences in gene expression profiles. Furthermore, specific analogs diverged markedly from our hypothesis in expression of genes expected to be important for therapeutic promise. However, promoter analysis of genes whose expression was analyzed indicates general regulatory trends along structural frameworks. Our results suggest that certain structural motifs, particularly the basic frameworks found in analog 4 and analog 9, represent important starting points to exploit in generating additional rexinoids for future study and therapeutic applications.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Bexaroteno/química , Bexaroteno/farmacologia , Desenho de Fármacos , Transcriptoma , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA