Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Leukoc Biol ; 105(6): 1183-1194, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30942918

RESUMO

GM-CSF is important in regulating acute, persistent neutrophilic inflammation in certain settings, including lung injury. Ligand binding induces rapid internalization of the GM-CSF receptor (GM-CSFRα) complex, a process essential for signaling. Whereas GM-CSF controls many aspects of neutrophil biology, regulation of GM-CSFRα expression is poorly understood, particularly the role of GM-CSFRα in ligand clearance and whether signaling is sustained despite major down-regulation of GM-CSFRα surface expression. We established a quantitative assay of GM-CSFRα surface expression and used this, together with selective anti-GM-CSFR antibodies, to define GM-CSFRα kinetics in human neutrophils, and in murine blood and alveolar neutrophils in a lung injury model. Despite rapid sustained ligand-induced GM-CSFRα loss from the neutrophil surface, which persisted even following ligand removal, pro-survival effects of GM-CSF required ongoing ligand-receptor interaction. Neutrophils recruited to the lungs following LPS challenge showed initially high mGM-CSFRα expression, which along with mGM-CSFRß declined over 24 hr; this was associated with a transient increase in bronchoalveolar lavage fluid (BALF) mGM-CSF concentration. Treating mice in an LPS challenge model with CAM-3003, an anti-mGM-CSFRα mAb, inhibited inflammatory cell influx into the lung and maintained the level of BALF mGM-CSF. Consistent with neutrophil consumption of GM-CSF, human neutrophils depleted exogenous GM-CSF, independent of protease activity. These data show that loss of membrane GM-CSFRα following GM-CSF exposure does not preclude sustained GM-CSF/GM-CSFRα signaling and that this receptor plays a key role in ligand clearance. Hence neutrophilic activation via GM-CSFR may play an important role in neutrophilic lung inflammation even in the absence of high GM-CSF levels or GM-CSFRα expression.


Assuntos
Lesão Pulmonar Aguda/imunologia , Regulação da Expressão Gênica/imunologia , Neutrófilos/imunologia , Alvéolos Pulmonares/imunologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/imunologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/patologia , Adulto , Animais , Linhagem Celular Tumoral , Subunidade beta Comum dos Receptores de Citocinas/genética , Subunidade beta Comum dos Receptores de Citocinas/imunologia , Modelos Animais de Doenças , Feminino , Humanos , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neutrófilos/patologia , Alvéolos Pulmonares/patologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Fatores de Tempo
2.
Thorax ; 73(10): 918-925, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30064991

RESUMO

BACKGROUND: Critically ill patients with impaired neutrophil phagocytosis have significantly increased risk of nosocomial infection. Granulocyte-macrophage colony-stimulating factor (GM-CSF) improves phagocytosis by neutrophils ex vivo. This study tested the hypothesis that GM-CSF improves neutrophil phagocytosis in critically ill patients in whom phagocytosis is known to be impaired. METHODS: This was a multicentre, phase IIa randomised, placebo-controlled clinical trial. Using a personalised medicine approach, only critically ill patients with impaired neutrophil phagocytosis were included. Patients were randomised 1:1 to subcutaneous GM-CSF (3 µg/kg/day) or placebo, once daily for 4 days. The primary outcome measure was neutrophil phagocytosis 2 days after initiation of GM-CSF. Secondary outcomes included neutrophil phagocytosis over time, neutrophil functions other than phagocytosis, monocyte HLA-DR expression and safety. RESULTS: Thirty-eight patients were recruited from five intensive care units (17 randomised to GM-CSF). Mean neutrophil phagocytosis at day 2 was 57.2% (SD 13.2%) in the GM-CSF group and 49.8% (13.4%) in the placebo group, p=0.73. The proportion of patients with neutrophil phagocytosis≥50% at day 2, and monocyte HLA-DR, appeared significantly higher in the GM-CSF group. Neutrophil functions other than phagocytosis did not appear significantly different between the groups. The most common adverse event associated with GM-CSF was fever. CONCLUSIONS: GM-CSF did not improve mean neutrophil phagocytosis at day 2, but was safe and appeared to increase the proportion of patients with adequate phagocytosis. The study suggests proof of principle for a pharmacological effect on neutrophil function in a subset of critically ill patients.


Assuntos
Estado Terminal/terapia , Fator Estimulador de Colônias de Granulócitos e Macrófagos/uso terapêutico , Neutrófilos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/efeitos adversos , Antígenos HLA-DR/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Monócitos/metabolismo , Neutrófilos/fisiologia , Resultado do Tratamento
3.
J Exp Med ; 214(4): 1111-1128, 2017 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28351984

RESUMO

The phagocyte respiratory burst is crucial for innate immunity. The transfer of electrons to oxygen is mediated by a membrane-bound heterodimer, comprising gp91phox and p22phox subunits. Deficiency of either subunit leads to severe immunodeficiency. We describe Eros (essential for reactive oxygen species), a protein encoded by the previously undefined mouse gene bc017643, and show that it is essential for host defense via the phagocyte NAPDH oxidase. Eros is required for expression of the NADPH oxidase components, gp91phox and p22phox Consequently, Eros-deficient mice quickly succumb to infection. Eros also contributes to the formation of neutrophil extracellular traps (NETS) and impacts on the immune response to melanoma metastases. Eros is an ortholog of the plant protein Ycf4, which is necessary for expression of proteins of the photosynthetic photosystem 1 complex, itself also an NADPH oxio-reductase. We thus describe the key role of the previously uncharacterized protein Eros in host defense.


Assuntos
Proteínas de Membrana/fisiologia , Fagócitos/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória/fisiologia , Animais , Grupo dos Citocromos b/análise , Grupo dos Citocromos b/fisiologia , Retículo Endoplasmático/metabolismo , Células HEK293 , Humanos , Imunidade Inata , Macrófagos/imunologia , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , NADPH Oxidase 2 , NADPH Oxidases/análise , NADPH Oxidases/fisiologia , Neutrófilos/imunologia , Fagocitose
4.
Am J Respir Cell Mol Biol ; 56(4): 423-431, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27854516

RESUMO

The release of neutrophil extracellular traps (NETs) is a major immune mechanism intended to capture pathogens. These histone- and protease-coated DNA structures are released by neutrophils in response to a variety of stimuli, including respiratory pathogens, and have been identified in the airways of patients with respiratory infection, cystic fibrosis, acute lung injury, primary graft dysfunction, and chronic obstructive pulmonary disease. NET production has been demonstrated in the lungs of mice infected with Staphylococcus aureus, Klebsiella pneumoniae, and Aspergillus fumigatus. Since the discovery of NETs over a decade ago, evidence that "NET evasion" might act as an immune protection strategy among respiratory pathogens, including group A Streptococcus, Bordetella pertussis, and Haemophilus influenzae, has been growing, with the majority of these studies being published in the past 2 years. Evasion strategies fall into three main categories: inhibition of NET release by down-regulating host inflammatory responses; degradation of NETs using pathogen-derived DNases; and resistance to the microbicidal components of NETs, which involves a variety of mechanisms, including encapsulation. Hence, the evasion of NETs appears to be a widespread strategy to allow pathogen proliferation and dissemination, and is currently a topic of intense research interest. This article outlines the evidence supporting the three main strategies of NET evasion-inhibition, degradation, and resistance-with particular reference to common respiratory pathogens.


Assuntos
Armadilhas Extracelulares/imunologia , Evasão da Resposta Imune , Pulmão/microbiologia , Pulmão/virologia , Animais , Humanos , Modelos Imunológicos
5.
Thorax ; 71(11): 1030-1038, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27581620

RESUMO

BACKGROUND: The inflamed bronchial mucosal surface is a profoundly hypoxic environment. Neutrophilic airway inflammation and neutrophil-derived proteases have been linked to disease progression in conditions such as COPD and cystic fibrosis, but the effects of hypoxia on potentially harmful neutrophil functional responses such as degranulation are unknown. METHODS AND RESULTS: Following exposure to hypoxia (0.8% oxygen, 3 kPa for 4 h), neutrophils stimulated with inflammatory agonists (granulocyte-macrophage colony stimulating factor or platelet-activating factor and formylated peptide) displayed a markedly augmented (twofold to sixfold) release of azurophilic (neutrophil elastase, myeloperoxidase), specific (lactoferrin) and gelatinase (matrix metalloproteinase-9) granule contents. Neutrophil supernatants derived under hypoxic but not normoxic conditions induced extensive airway epithelial cell detachment and death, which was prevented by coincubation with the antiprotease α-1 antitrypsin; both normoxic and hypoxic supernatants impaired ciliary function. Surprisingly, the hypoxic upregulation of neutrophil degranulation was not dependent on hypoxia-inducible factor (HIF), nor was it fully reversed by inhibition of phospholipase C signalling. Hypoxia augmented the resting and cytokine-stimulated phosphorylation of AKT, and inhibition of phosphoinositide 3-kinase (PI3K)γ (but not other PI3K isoforms) prevented the hypoxic upregulation of neutrophil elastase release. CONCLUSION: Hypoxia augments neutrophil degranulation and confers enhanced potential for damage to respiratory airway epithelial cells in a HIF-independent but PI3Kγ-dependent fashion.


Assuntos
Degranulação Celular/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Ativação de Neutrófilo/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Apoptose , Western Blotting , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Imuno-Histoquímica , Lactoferrina/metabolismo , Elastase de Leucócito/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Microscopia Eletrônica , Peroxidase/metabolismo , Fator de Ativação de Plaquetas/farmacologia , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Formil Peptídeo/metabolismo , Transdução de Sinais , Regulação para Cima
6.
J Immunol ; 195(7): 3149-59, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26311901

RESUMO

We identified a novel, evolutionarily conserved receptor encoded within the human leukocyte receptor complex and syntenic region of mouse chromosome 7, named T cell-interacting, activating receptor on myeloid cells-1 (TARM1). The transmembrane region of TARM1 contained a conserved arginine residue, consistent with association with a signaling adaptor. TARM1 associated with the ITAM adaptor FcRγ but not with DAP10 or DAP12. In healthy mice, TARM1 is constitutively expressed on the cell surface of mature and immature CD11b(+)Gr-1(+) neutrophils within the bone marrow. Following i.p. LPS treatment or systemic bacterial challenge, TARM1 expression was upregulated by neutrophils and inflammatory monocytes and TARM1(+) cells were rapidly recruited to sites of inflammation. TARM1 expression was also upregulated by bone marrow-derived macrophages and dendritic cells following stimulation with TLR agonists in vitro. Ligation of TARM1 receptor in the presence of TLR ligands, such as LPS, enhanced the secretion of proinflammatory cytokines by macrophages and primary mouse neutrophils, whereas TARM1 stimulation alone had no effect. Finally, an immobilized TARM1-Fc fusion protein suppressed CD4(+) T cell activation and proliferation in vitro. These results suggest that a putative T cell ligand can interact with TARM1 receptor, resulting in bidirectional signaling and raising the T cell activation threshold while costimulating the release of proinflammatory cytokines by macrophages and neutrophils.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Macrófagos/imunologia , Neutrófilos/imunologia , Receptores Imunológicos/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Granulócitos/imunologia , Granulócitos/metabolismo , Células HEK293 , Antígenos HLA/genética , Humanos , Inflamação/imunologia , Ligantes , Lipopolissacarídeos/imunologia , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Dados de Sequência Molecular , Neutrófilos/metabolismo , Transporte Proteico/imunologia , Receptores Imunológicos/genética , Proteínas Recombinantes de Fusão/imunologia , Transdução de Sinais/imunologia
7.
PLoS One ; 9(12): e116055, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25541728

RESUMO

Human rhinoviruses (HRV) are a major cause of exacerbations of airways disease. Aspects of cell signalling responses to HRV infection remain unclear, particularly with regard to signalling via PI3K, and the PI3K-dependent pathway, autophagy. We investigated the roles of PI3K and autophagy in the responses of epithelial cells to major and minor group HRV infection. The PI3K inhibitor 3-MA, commonly used to inhibit autophagy, markedly reduced HRV-induced cytokine induction. Further investigation of potential targets of 3-MA and comparison of results using this inhibitor to a panel of general and class I-selective PI3K inhibitors showed that several PI3Ks cooperatively regulate responses to HRV. Targeting by siRNA of the autophagy proteins Beclin-1, Atg7, LC3, alone or in combination, or targeting of the autophagy-specific class III PI3K had at most only modest effects on HRV-induced cell signalling as judged by induction of proinflammatory cytokine production. Our data indicate that PI3K and mTOR are involved in induction of proinflammatory cytokines after HRV infection, and that autophagy has little role in the cytokine response to HRV or control of HRV replication.


Assuntos
Autofagia , Células Epiteliais/microbiologia , Inibidores de Fosfoinositídeo-3 Quinase , Infecções por Picornaviridae/enzimologia , Infecções por Picornaviridae/fisiopatologia , Inibidores de Proteínas Quinases/farmacologia , Rhinovirus/fisiologia , Linhagem Celular , Citocinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Interações Hospedeiro-Patógeno , Humanos , Fosfatidilinositol 3-Quinases/imunologia , Infecções por Picornaviridae/imunologia , Transdução de Sinais , Serina-Treonina Quinases TOR/imunologia
8.
PLoS One ; 7(9): e45933, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029326

RESUMO

We have investigated the contribution of individual phosphoinositide 3-kinase (PI3K) Class I isoforms to the regulation of neutrophil survival using (i) a panel of commercially available small molecule isoform-selective PI3K Class I inhibitors, (ii) novel inhibitors, which target single or multiple Class I isoforms (PI3Kα, PI3Kß, PI3Kδ, and PI3Kγ), and (iii) transgenic mice lacking functional PI3K isoforms (p110δ(KO)γ(KO) or p110γ(KO)). Our data suggest that there is considerable functional redundancy amongst Class I PI3Ks (both Class IA and Class IB) with regard to GM-CSF-mediated suppression of neutrophil apoptosis. Hence pharmacological inhibition of any 3 or more PI3K isoforms was required to block the GM-CSF survival response in human neutrophils, with inhibition of individual or any two isoforms having little or no effect. Likewise, isolated blood neutrophils derived from double knockout PI3K p110δ(KO)γ(KO) mice underwent normal time-dependent constitutive apoptosis and displayed identical GM-CSF mediated survival to wild type cells, but were sensitized to pharmacological inhibition of the remaining PI3K isoforms. Surprisingly, the pro-survival neutrophil phenotype observed in patients with an acute exacerbation of chronic obstructive pulmonary disease (COPD) was resilient to inactivation of the PI3K pathway.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Neutrófilos/citologia , Neutrófilos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neutrófilos/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA